Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=4x^2+4x+11\)
\(=\left(4x^2+4x+1\right)+10\)
\(=\left(2x+1\right)^2+10\ge10\)
Min A = 10 khi: 2x + 1 = 0
<=> x = -1/2
a+b+c=9
a^2+b^2+c^2=53
A=ab+ac+bc
2A=2(ab+ac+bc)
(a+b+c)^2=81
a^2+b^2+c^2+2(ab+ac+bc)=81
53+2A=81
2A=28
A=14
Tổng ba số bằng 9, tổng bình phương của chúng bằng 53. Tính tổng các tích của hai số trong ba số ấy.
Ta có : 53 = 52+32+12
5 + 3 + 1 = 9
Tổng cần tìm : (5.3)+(5.1)+(3.1)=15+5+3=23
Gọi 3 số nguyên liên tiếp là a; a + 1; a + 2 (a thuộc Z)
Ta có \(\left[a+\left(a+1\right)+\left(a+2\right)\right]^3=\left(3a+3\right)^3=\left[3\left(a+1\right)\right]^3=27\left(a+1\right)^3⋮9\)
=> đpcm
Tổng lập phương mà Hùng :
\(a^3+\left(a+1\right)^3+\left(a+2\right)^3\)
Bạn sang hoidap247 sẽ đc giải quyết câu hỏi nhanh hơn nhé
くらにみくちなそちにきにしちんくちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちち
hu hu.. ! lần này mình tự làm nếu còn giống của bạn nào thì đừng bảo mình coppy nhé ! cai nay tu minh biet nen minh tu lam day !
Gọi 3 số nguyên liên tiếp lần lượt là (a - 1), a, (a + 1)
chứng minh: (a - 1)^3 + a^3 + (a + 1)^3 chia hết cho 9
=>(a - 1)^3 + a^3 + (a + 1)^3=a^3 - 3a^2 + 3a - 1 + a^3 + a^3 + 3a^2 + 3a +1 = 3a^3 + 6a
= >3a(a^2 + 2) = 3a(a^2 - 1) + 9a
= >3(a - 1)a(a + 1) + 9a
ta da biet tíck của 3 sô tự nhiên liên tiếp chia hhết cho 3 nên 3(a - 1)a(a + 1) chia hết cho 9
Mặt khác 9a chia hết cho 9 nên
=>3(a - 1)a(a + 1) + 9a
hay ta dc điều phải chứng minh
gọi ba số tự nhiên đó là a,a+1,a+2
theo bài ta có
(a+a+1+a+2)3
=(a+a+a+1+2)3
=(a+a+a+3)3
=(a+a+a)3+27
mà (a+a+a)3 chia hết cho 3
nên (a+a+a)3 chia het cho 9
do 27 chia het cho 9
nen (a+a+a)3+27 chia het cho 9
vậy ............................