Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tứ giác ABCD có: \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)
Hay \(2\widehat{A}+2\widehat{D}=360^o\)
\(\Rightarrow2\left(\widehat{A}+\widehat{D}\right)=360^o\)
\(\Rightarrow\widehat{A}+\widehat{D}=180^o\)
\(\Rightarrow AB//CD\)
Vậy tứ giác ABCD là hình thang. Hình thang này có 2 góc kề 1 đáy bằng nhau nên là hình thang cân.
Xét\(\Delta ABC\) và \(\Delta ABD\)có :
BC = AD
BAD = ABC (gt)
AB chung
=> \(\Delta ABC=\Delta ABD\)(c.g.c)
=> AC = BD
=> ABD = BAC
=> \(\Delta AOB\) cân tại O
=> AO = OB
Mà AO + OC = AC
BO + OD = BD
AC = BD
=> \(\Delta ODC\) cân tại O
=> ODC = OCD
Xét \(\Delta\)OAB có :
OBA = \(\frac{180-AOB}{2}\)
Xét \(\Delta ODC\)có
ODC =\(\frac{180-DOC}{2}\)
Mà AOB = DOC ( đối đỉnh )
=> OBA = ODC
Mà 2 góc này ở vị trí so le trong
=> AB//CD
Mà AC = BD (cmt)
=> ABCD là hình thang cân
Xét tam giác COD ta có :
\(\widehat{COD}+\widehat{OCD}+\widehat{ODC}=180^o\)
\(\Rightarrow\widehat{COD}=180^o-\left(\widehat{OCD}+\widehat{ODC}\right)\)
\(\Rightarrow\widehat{COD}=180^o-\frac{1}{2}\left(\widehat{ADC}+\widehat{BCD}\right)\)
\(\Rightarrow\widehat{COD}=180^o-\frac{1}{2}\left[360^o-\left(\widehat{BAD}+\widehat{ABC}\right)\right]\)
\(\Rightarrow\widehat{COD}=180^o-180^o+\frac{1}{2}\left(\widehat{A}+\widehat{B}\right)\)
\(\Rightarrow\widehat{COD}=\frac{\widehat{A}+\widehat{B}}{2}\)( đpcm )
Hình tứ giác ABCD có 2 cạnh đáy là : Ab Và CD
Mà : \(\widehat{A}=\widehat{B};\widehat{C}=\widehat{D}\)
Nên Hình tứ giác alf hình thang cân