\(\widehat{A}\)=\(\widehat{B}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2017

Hình tứ giác ABCD có 2 cạnh đáy là : Ab Và CD

Mà : \(\widehat{A}=\widehat{B};\widehat{C}=\widehat{D}\)

Nên Hình tứ giác alf hình thang cân 

12 tháng 9 2020

tứ giác ABCD có: \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)

Hay \(2\widehat{A}+2\widehat{D}=360^o\)

        \(\Rightarrow2\left(\widehat{A}+\widehat{D}\right)=360^o\)

\(\Rightarrow\widehat{A}+\widehat{D}=180^o\)

\(\Rightarrow AB//CD\)

Vậy tứ giác ABCD là hình thang. Hình thang này có 2 góc kề 1 đáy bằng nhau nên là hình thang cân.

Xét\(\Delta ABC\) và \(\Delta ABD\)có :

BC = AD 

BAD = ABC (gt)

AB chung

=> \(\Delta ABC=\Delta ABD\)(c.g.c)

=> AC = BD 

=> ABD = BAC 

=> \(\Delta AOB\) cân tại O 

=> AO = OB 

Mà AO + OC = AC

BO + OD = BD

AC = BD

=> \(\Delta ODC\) cân tại O

=> ODC = OCD 

Xét \(\Delta\)OAB có :

OBA = \(\frac{180-AOB}{2}\)

Xét \(\Delta ODC\)có 

ODC =\(\frac{180-DOC}{2}\)

Mà AOB = DOC ( đối đỉnh )

=> OBA = ODC

Mà 2 góc này ở vị trí so le trong 

=> AB//CD

Mà AC = BD (cmt)

=> ABCD là hình thang cân

21 tháng 9 2018

Xét tam giác COD ta có : 

    \(\widehat{COD}+\widehat{OCD}+\widehat{ODC}=180^o\)

\(\Rightarrow\widehat{COD}=180^o-\left(\widehat{OCD}+\widehat{ODC}\right)\)

\(\Rightarrow\widehat{COD}=180^o-\frac{1}{2}\left(\widehat{ADC}+\widehat{BCD}\right)\)

\(\Rightarrow\widehat{COD}=180^o-\frac{1}{2}\left[360^o-\left(\widehat{BAD}+\widehat{ABC}\right)\right]\)

\(\Rightarrow\widehat{COD}=180^o-180^o+\frac{1}{2}\left(\widehat{A}+\widehat{B}\right)\)

\(\Rightarrow\widehat{COD}=\frac{\widehat{A}+\widehat{B}}{2}\)( đpcm )