\(\text{a. a^3 + b^3 = (a + b)^3 - 3ab (a + b)}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2020

 (a+b)^3 - 3ab(a+b)
= (a^3 + 3a^2b + 3ab^2 + b^3) - (3a^2b + 3ab^2) 
= a^3 + 3a^2b + 3ab^2 + b^3 - 3a^2b - 3ab^2 
= a^3 + b^3 (đpcm) 

7 tháng 3 2020

ta có

a3+b3=(a3+3a2b+3ab2+b3)-3a2b-3ab2

=(a+b)3-3ab(a+b) (ĐPCM)

11 tháng 7 2018

a) \(\left(x+y\right)^3-\left(x-y\right)^3-2y^3\)

\(=x^3+3x^2y+3xy^2+y^3-\left(x-y\right)^3-2y^3\)

\(=x^3+3x^2y+3xy^2+y^3-\left(x^3-3x^2y+3xy^2-y^3\right)-2y^3\)

\(=x^3+3x^3y+3xy^3+y^3-x^3+3x^2y-3xy^2+y^3-2y^3\)

\(=6x^2y\)

b) \(\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3\)

\(=a^3-3a^2b+3ab^2-b^3+\left(b-c\right)^3+\left(c-b\right)^3\)

\(=a^3-3a^2b+3ab^2-b^3+b^3-3b^2c+3ab^2-c^3+\left(c-d\right)^3\)

\(=a^3-3a^3b+3ab^2-b^3+b^3-3b^3c+3bc^2-c^3+c^3-3c^3b+3cb^3-b^3\)

\(=-b^3+3ab^2-3a^2b+a^3\)

11 tháng 7 2018

Mọi người giúp mk với nha, bữa trước mk đi chơi hè về nên bỏ qua bài này về lý thuyết nên chẳng hiểu gì cả, các bạn giúp mk giải và giảng cũng như chú thích các bước làm và ứng dụng hằng đẳng thức nào để giúp mk hiểu bài hơn và hoàn thành bài tập về nhà với nha, mk xin cảm ơn trước và nếu các bạn làm đúng thì mk sẽ k đúng và kết bạn với các bạn nha!

Hihihi!!!^_^ Mong các bạn giúp đỡ mk!!!!!!!!!!!!!!!

29 tháng 8 2021

\(VT=\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{2}.\left(a+b+c\right)\)

\(VT=\frac{a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2}{2}.\left(a+b+c\right)\)

\(VT=\frac{2a^2+2b^2+2c^2-2ab-2bc-2ca}{2}.\left(a+b+c\right)\)

\(VT=\frac{2.\left(a^2+b^2+c^2-ab-bc-ca\right)}{2}.\left(a+b+c\right)\)

\(VT=\left(a^2+b^2+c^2-ab-bc-ca\right).\left(a+b+c\right)\)

\(VT=a^3+b^3+c^3-3abc=VP\left(đpcm\right)\)

2 tháng 10 2017

C/M:

a)a^3+b^3=(a+b)^3-3a*b*(a+b)

VP=a^3+3*a^2*b+3*a*b^2+b^3-3*a^2*b-3*a*b^2

=a^3+b^3

Thay:a*b=6 và a+b=-5

Ta có:a^3+b^3=(a+b)*(a^2*a*b*b^2) =-5*(a^2*6*b^2)

Mà:a*b=6 nên a2*b2=62=36

Suy ra: =-5*(36*6)=-1080

Tương tự như câu a) làm câu b).Chúc bạn làm được câu b)thanghoa.

2 tháng 10 2017

Mình không biết làm đúng hay sai nhan.Nhưng bạn cứ chép đáp án vào.hehe

20 tháng 4 2017

a) a3 + b3 = (a + b)3 – 3ab(a + b)

Thực hiện vế phải:

(a + b)3 – 3ab(a + b) = a3 + 3a2b+ 3ab2 + b3 – 3a2b – 3ab2

= a3 + b3

Vậy a3 + b3 = (a + b)3 – 3ab(a + b)

b) a3 – b3 = (a – b)3 + 3ab(a – b)

Thực hiện vế phải:

(a – b)3 + 3ab(a – b) = a3 - 3a2b+ 3ab2 - b3 + 3a2b – 3ab2

= a3 – b3

Vậy a3 – b3 = (a – b)3 + 3ab(a – b)

Áp dụng:

Với ab = 6, a + b = -5, ta được:

a3 + b3 = (a + b)3 – 3ab(a + b) = (-5)3 - 3 . 6 . (-5)

= -53 + 3 . 6 . 5 = -125 + 90 = -35.



27 tháng 6 2017

a) Ta có : a3 + b3 = (a + b)3 – 3ab(a + b)

=> VP = (a + b)3 – 3ab(a + b) = a3 + 3a2b+ 3ab2 + b3 – 3a2b – 3ab2

= a3 + b3

Vậy a3 + b3 = (a + b)3 – 3ab(a + b)

b) a3 – b3 = (a – b)3 + 3ab(a – b)

=> VP = (a – b)3 + 3ab(a – b) = a3 - 3a2b+ 3ab2 - b3 + 3a2b – 3ab2

= a3 – b3

Vậy a3 – b3 = (a – b)3 + 3ab(a – b)

Áp dụng:

Với ab = 6, a + b = -5, ta được:

a3 + b3 = (a + b)3 – 3ab(a + b) = (-5)3 - 3 . 6 . (-5)

= -53 + 3 . 6 . 5 = -125 + 90 = -35.


18 tháng 7 2016

ban su dung hang dang thuc la ra

26 tháng 11 2018

Câu hỏi của Trung Nguyễn Thành - Toán lớp 8 - Học toán với OnlineMath tham khảo

29 tháng 7 2020

Ta có: \(\left(a+b\right)^3=a^3+3a^2b+3ab^2+b^3=a^3+3ab\left(a+b\right)+b^3\) (1)

Thay a + b = 1 vào (1) ta được:

\(1^3=a^3+3ab.1+b^3\)

\(1^3=a^3+3ab+b^3\)

Hay: \(a^3+3ab+b^3=1\)

=> đpcm

4 tháng 4 2020

bài này chắc có câu a đúng ko

ta có \(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}=\frac{a}{c}=\frac{c}{b}=\frac{b}{a}\)

\(\Leftrightarrow a^4c^2+b^4a^2+c^4b^2=abc\left(a^2c+c^2a+b^2c\right)\)

đặt \(x=a^2c;y=b^2a;z=c^2b\)ta được

\(x^2+y^2+z^2=xy+yz+zx\)

áp dụng kết quả của câu a ta đc

\(\left(x-y\right)^2+\left(y-2\right)^2+\left(z-x\right)^2=0=>x=y=z\)

\(=>a^2c=b^2a=c^2b=>ac=b^2;bc=a^2;ab=c^2\)

=>a=b=c(dpcm)

4 tháng 4 2020

\(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}=\frac{a}{c}+\frac{c}{b}+\frac{b}{a}\)

Đặt \(\frac{a}{b}=x;\frac{b}{c}=y;\frac{c}{a}=z\)

Khi đó:\(x^2+y^2+z^2=xy+yz+zx\)

\(\Leftrightarrow2\left(x^2+y^2+z^2\right)=2\left(xy+yz+zx\right)\)

\(\Leftrightarrow2\left(x^2+y^2+z^2\right)-2\left(xy+yz+zx\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

Mà \(\left(x-y\right)^2\ge0;\left(y-z\right)^2\ge0;\left(z-x\right)^2\ge0\)

\(\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)

Dấu "=" xảy ra tại x=y=z hay a=b=c

Suy ra điều fải chứng minh