\(\sqrt{9-\sqrt{17}}\)* \(\sqrt{9+\sqrt{7}}\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2018

\(\sqrt{9-\sqrt[]{17}}+\sqrt{9+\sqrt{7}=8}\)

\(9-17+9+7=8\)

\(-8+16=8\)

5 tháng 7 2018

Sửa đề: \(\sqrt{9-\sqrt{17}}.\sqrt{9+\sqrt{17}}=8\)

\(A=\sqrt{9-\sqrt{17}}.\sqrt{9+\sqrt{17}}=\sqrt{81-17}=\sqrt{64}=8\)

NV
22 tháng 5 2019

\(\left(2-\sqrt{3}\right)\sqrt{7+4\sqrt{3}}=\left(2-\sqrt{3}\right)\sqrt{2^2+2.2\sqrt{3}+3}=\left(2-\sqrt{3}\right)\sqrt{\left(2+\sqrt{3}\right)^2}\)

\(=\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)=4-3=1\)

\(\sqrt{9-\sqrt{17}}\sqrt{9+\sqrt{17}}=\sqrt{\left(9-\sqrt{17}\right)\left(9+\sqrt{17}\right)}\)

\(=\sqrt{81-17}=\sqrt{64}=8\)

12 tháng 8 2016

a) Sai đề 

20 tháng 7 2016

\(\sqrt{\left(9-\sqrt{17}\right)\left(9+\sqrt{17}\right)}=\sqrt{81-17}=\sqrt{64}=8\)

Vậy VT=VP

19 tháng 7 2019

\(\sqrt{9-\sqrt{17}}.\sqrt{9+\sqrt{17}}=\sqrt{9^2-17}=\sqrt{64}=8\)

\(2\sqrt{2}\left(\sqrt{3}-2\right)+9+4\sqrt{2}-2\sqrt{6}=2\sqrt{6}-4\sqrt{2}+9+4\sqrt{2}-2\sqrt{6}=9\) \(\sqrt{7-2\sqrt{10}}+\sqrt{2}=\sqrt{2-2\sqrt{10}+5}+\sqrt{2}=\sqrt{\left(\sqrt{5}\right)^2-2.\sqrt{2}.\sqrt{5}+\left(\sqrt{5}\right)^2}+\sqrt{2}=\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}+\sqrt{2}=\left|\sqrt{5}-\sqrt{2}\right|+\sqrt{2}=\sqrt{5}-\sqrt{2}+\sqrt{2}=\sqrt{5}\) \(\sqrt{\sqrt{3}+\sqrt{2}}.\sqrt{\sqrt{3}-\sqrt{2}}=\sqrt{\left(\sqrt{3}\right)^2-\left(\sqrt{2}\right)^2}=\sqrt{3-2}=\sqrt{1}=1\) \(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}=\sqrt{2}\left(\sqrt{4+\sqrt{15}}\right)\left(\sqrt{5}-\sqrt{3}\right)\left[\left(\sqrt{4+\sqrt{15}}\right)\left(\sqrt{4-\sqrt{15}}\right)\right]=\sqrt{2}\left(\sqrt{4+\sqrt{15}}\right)\left(\sqrt{5}-\sqrt{3}\right);\left[\sqrt{2}\left(\sqrt{4+\sqrt{15}}\right)\left(\sqrt{5}-\sqrt{3}\right)\right]^2=2.\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)=4\left(4+\sqrt{15}\right)\left(4-\sqrt{15}\right)=4\Rightarrow\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}=\sqrt{4}=2\left(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}>0\right)\)

13 tháng 7 2018

a/ \(\sqrt{9-\sqrt{17}}.\sqrt{9+\sqrt{17}}=\sqrt{81-17}=\sqrt{64}=8\)

b/ \(\left(\sqrt{2}-1\right)^2=2-2\sqrt{2}+1=\sqrt{9}-\sqrt{8}\)

13 tháng 7 2018

a)  Bình phương vế trái, ta được:

\(\left(\sqrt{9-\sqrt{17}}.\sqrt{9+\sqrt{17}}\right)^2\)

\(\Leftrightarrow\left(9-\sqrt{17}\right).\left(9+\sqrt{17}\right)\)

\(\Leftrightarrow81-17=64=8^2\)

\(\Rightarrow\sqrt{9-\sqrt{17}}.\sqrt{9+\sqrt{17}}=8\left(đpcm\right)\)

b) Ta có: \(\left(\sqrt{2}-1\right)^2=\left(\sqrt{2}\right)^2-2\sqrt{2}+1=2-2\sqrt{2}+1=3-2\sqrt{2}=\sqrt{9}-\sqrt{8}\) (đpcm)

3 tháng 7 2018

a.

\(\sqrt{9-\sqrt{17}}.\sqrt{9+\sqrt{17}}\\ =\sqrt{\left(9-\sqrt{17}\right)\left(9+\sqrt{17}\right)}\\ =\sqrt{81-17}\\ =\sqrt{64}\\=8\)

3 tháng 7 2018

\(a.VT=\sqrt{9-\sqrt{17}}.\sqrt{9+\sqrt{17}}=\sqrt{81-17}=8=VP\)

\(b.\dfrac{1}{5-2\sqrt{6}}+\dfrac{2}{5+2\sqrt{6}}=3\sqrt{3}-\sqrt{2}\) ( thiếu đề )

\(VT=\dfrac{1}{5-2\sqrt{6}}+\dfrac{2}{5+2\sqrt{6}}=\dfrac{1}{3-2\sqrt{3}.\sqrt{2}+2}+\dfrac{2}{3+2\sqrt{3}.\sqrt{2}+2}=\dfrac{1}{\sqrt{3}-\sqrt{2}}+\dfrac{2}{\sqrt{3}+\sqrt{2}}=\sqrt{3}+\sqrt{2}+2\sqrt{3}-2\sqrt{2}=3\sqrt{3}-\sqrt{2}=VP\)

11 tháng 7 2017

a) \(VT=\sqrt{9-\sqrt{17}}.\sqrt{9+\sqrt{17}}=\sqrt{\left(9-\sqrt{17}\right)\left(9+\sqrt{17}\right)}\)

=\(\sqrt{9^2-\left(\sqrt{17}\right)^2}=\sqrt{81-17}=\sqrt{64}=8=VP\)

b) \(VT=2\sqrt{2}\left(\sqrt{3}-2\right)+\left(1+2\sqrt{2}\right)^2-2\sqrt{6}\)

=\(2\sqrt{6}-4\sqrt{2}+1+4\sqrt{2}+8-2\sqrt{6}=9=VP\)

Câu 8:

a)

Ta có: \(VT=\sqrt{4-2\sqrt{3}}-\sqrt{3}\)

\(=\sqrt{3-2\cdot\sqrt{3}\cdot1+1}-\sqrt{3}\)

\(=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{3}\)

\(=\left|\sqrt{3}-1\right|-\sqrt{3}\)(1)

Ta có: 3>1

\(\Leftrightarrow\sqrt{3}>\sqrt{1}\)

\(\Leftrightarrow\sqrt{3}>1\)

\(\Leftrightarrow\sqrt{3}-1>0\)

\(\Leftrightarrow\left|\sqrt{3}-1\right|=\sqrt{3}-1\)(2)

Từ (1) và (2) suy ra \(VT=\sqrt{3}-1-\sqrt{3}=-1=VP\)(đpcm)

b) Ta có: \(VP=\left(\sqrt{5}+2\right)^2\)

\(=\left(\sqrt{5}\right)^2+2\cdot\sqrt{5}\cdot2+2^2\)

\(=5+4\sqrt{5}+4\)

\(=9+4\sqrt{5}=VT\)(đpcm)

c) Ta có: \(VT=\sqrt{9+4\sqrt{5}}-\sqrt{5}\)

\(=\sqrt{4+2\cdot2\cdot\sqrt{5}+5}-\sqrt{5}\)

\(=\sqrt{\left(2+\sqrt{5}\right)^2}-\sqrt{5}\)

\(=\left|2+\sqrt{5}\right|-\sqrt{5}\)

\(=2+\sqrt{5}-\sqrt{5}=2=VP\)(đpcm)

d) Ta có: \(VT=\sqrt{23+8\sqrt{7}}-\sqrt{7}\)

\(=\sqrt{16+2\cdot4\cdot\sqrt{7}+7}-\sqrt{7}\)

\(=\sqrt{\left(4+\sqrt{7}\right)^2}-\sqrt{7}\)

\(=\left|4+\sqrt{7}\right|-\sqrt{7}\)

\(=4+\sqrt{7}-\sqrt{7}\)

\(=4=VP\)(đpcm)

13 tháng 7 2020

em cảm ơn ạ yeu

25 tháng 7 2019
https://i.imgur.com/g7mbF2P.jpg
19 tháng 7 2018

1. \(\sqrt{5+2\sqrt{6}}-\sqrt{5-2\sqrt{6}}\)

\(=\sqrt{\left(\sqrt{2}+\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}\)

\(=\sqrt{2}+\sqrt{3}-\sqrt{3}+\sqrt{2}\)

\(=2\sqrt{2}\)

1. Tính giá trị biểu thức: \(A=\sqrt{a^2+4ab^2+4b}-\sqrt{4a^2-12ab^2+9b^4}\) với \(a=\sqrt{2}\) ; \(b=1\) 2. Đặt \(M=\sqrt{57+40\sqrt{2}}\) ; \(N=\sqrt{57-40\sqrt{2}}\). Tính giá trị của các biểu thức sau: a) M-N b) \(M^3-N^3\) 3. Chứng minh: \(\left(\frac{x\sqrt{x}+3\sqrt{3}}{x-\sqrt{3x}+3}-2\sqrt{x}\right)\left(\frac{\sqrt{x}+\sqrt{3}}{3-x}\right)=1\) (với \(x\ge0\) và \(x\ne3\)) 4. Chứng minh:...
Đọc tiếp

1. Tính giá trị biểu thức: \(A=\sqrt{a^2+4ab^2+4b}-\sqrt{4a^2-12ab^2+9b^4}\) với \(a=\sqrt{2}\) ; \(b=1\)

2. Đặt \(M=\sqrt{57+40\sqrt{2}}\) ; \(N=\sqrt{57-40\sqrt{2}}\). Tính giá trị của các biểu thức sau:

a) M-N

b) \(M^3-N^3\)

3. Chứng minh: \(\left(\frac{x\sqrt{x}+3\sqrt{3}}{x-\sqrt{3x}+3}-2\sqrt{x}\right)\left(\frac{\sqrt{x}+\sqrt{3}}{3-x}\right)=1\) (với \(x\ge0\)\(x\ne3\))

4. Chứng minh: \(\frac{\left(\sqrt{a}-\sqrt{b}\right)^2+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}.\frac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}=a-b\) (a > 0 ; b > 0)

5. Chứng minh: \(\sqrt{9+4\sqrt{2}}=2\sqrt{2}+1\) ; \(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}=5+3\sqrt{2}\) ; \(3-2\sqrt{2}=\left(1-\sqrt{2}\right)^2\)

6. Chứng minh: \(\left(\frac{1}{2\sqrt{2}-\sqrt{7}}-\left(3\sqrt{2}+\sqrt{17}\right)\right)^2=\left(\frac{1}{2\sqrt{2}-\sqrt{17}}-\left(2\sqrt{2}-\sqrt{17}\right)\right)^2\)

7. Chứng minh đẳng thức: \(\left(\frac{3\sqrt{2}-\sqrt{6}}{\sqrt{27}-3}-\frac{\sqrt{150}}{3}\right).\frac{1}{\sqrt{6}}=-\frac{4}{3}\)

8.Chứng minh: \(\frac{2002}{\sqrt{2003}}+\frac{2003}{\sqrt{2002}}>\sqrt{2002}+\sqrt{2003}\)

9. Chứng minh rằng: \(\sqrt{2000}-2\sqrt{2001}+\sqrt{2002}< 0\)

10. \(\frac{1}{2}+\frac{1}{3\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}< 2\) ; \(\frac{7}{5}< \frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}< \frac{29}{30}\)

0