K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2014

\(S=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{88}+3^{89}+3^{90}\right)\)

\(=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{88}\left(1+3+3^2\right)\)

\(=3.13+3^4.13+...+3^{88}.13\)

\(=13\left(3+3^4+...+3^{88}\right)\) chia hết cho \(13\)

6 tháng 9 2018

\(S=3+3^2+3^3+3^4+....+3^{89}+3^{90}\)

\(=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{88}+3^{89}+3^{90}\right)\)

\(==3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+3^{88}\left(1+3+3^2\right)\)

\(=\left(1+3+3^2\right).\left(3+3^4+....+3^{88}\right)\)

\(=13\left(3+3^4+...+3^{88}\right)\)\(⋮\)\(13\)

8 tháng 7 2017

A = \(3+3^2+3^3+.......+3^{89}+3^{90}\)

a) 

Số số hạng của A là :

(90 - 1) : 1 + 1 = 90 (số)

b)

A = \(3\left(1+3\right)+3^3\left(1+3\right)+3^5\left(1+3\right)+.......+3^{89}\left(1+3\right)\)

=> A = \(3\cdot4+3^3\cdot4+3^5\cdot4+.......+3^{89}\cdot4\)

=> A = \(\left(3+3^3+3^5+.....+3^{89}\right)\cdot4⋮4\)

A = \(3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+3^7\left(1+3+3^2\right)+.......+3^{87}\left(1+3+3^2\right)\)

=> A = \(13\left(3+3^4+3^7+......+3^{87}\right)⋮13\)

8 tháng 7 2017

cảm ơn bạn đã giúp mình

6 tháng 1 2017

s=2+2^2+2^3+.....+2^100

s=2.(1+2+2^2+2^3)+......+2^97.(1+2+2^2+2^3)

s=2.15+....+2^97.15

s=15.(2+....+2^97)

=> s chia het cho 15

6 tháng 1 2017

a=3+3^2+3^3+....+3^20

a=3.(1+3)+......+3^19.(1+3)

a=3.4+.....+3^19.4

a=4.(3+.....+3^19)

vay a chia het cho 4

30 tháng 6 2016

B = (1 + 3) + (32+33)+.....+(389+390)

  = 4 + 32 .(1 + 3) + .....+390.(1+3)

 = 1 .4 + 32.4 + ..... +390.4

= 4.(1 + 32 + .... +390) chia hết cho 4

6 tháng 9 2018

\(S=3+3^2+3^3+3^4+....+3^{89}+3^{90}\)

\(=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{88}+3^{89}+3^{90}\right)\)

\(==3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+3^{88}\left(1+3+3^2\right)\)

\(=\left(1+3+3^2\right).\left(3+3^4+....+3^{88}\right)\)

\(=13\left(3+3^4+...+3^{88}\right)\)\(⋮\)\(13\)

8 tháng 9 2015

S = (21+22)+(23+24)+...+(299+2100)

S = 2.(1+2)+23.(1+2)+...+299.(1+2)

S = 2.3+23.3+...+299.3

S = 3.(2+23+...+299)

=> S chia hết cho 3

S = (21+22+23+24)+(25+26+27+28)+...+(297+298+299+2100)

S = 2.(1+2+4+16)+25.(1+2+4+16)+...+297.(1+2+4+16)

S = 2.15+25.15+...+297.15

S = 15.(2+25+...+297)

=> S chia hết cho 15

5 tháng 1 2017

Bài dễ ợt ai mà chẳng làm được

4 tháng 2 2016

+)A=2^1+2^2+2^3+2^4+...+2^2010

=>A=(2^1+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^2009+2^2010)

=>A=6+2^2.(2+2^2)+2^4.(2+2^2)+...+2^2008(2+2^2)

=>A=6+2^2.6+2^4.6+...+2^2008.6

=>A=6.(1+2^2+2^4+...+2^2008)

=>A=3.2.(1+2^2+2^4+...+2^2008)

=>A chia hết cho 3

A=2+2^2+2^3+2^4+...+2^2010

A=(2+2^2+2^3)+(2^4+2^5+2^6)+(2^7+2^8+2^9)+...+(2^2008+2^2009+2^2010)

A=2.(1+1+2^2)+2^4(1+2+2^2)+2^7.(1+2+2^4)+...+2^2008.(1+2+2^2)

A=2.7+2^4.7+2^7.7+...+2^2008.7

A=7.(2+2^4+2^7+...+2^2008)

=> A chia hết cho 7

các phần khác làm tương tự

4 tháng 2 2016

A = 21 + 22 + 23 + 2+ .... + 22009 + 22010

=> A = ( 2+ 22 ) + ( 23 + 2) + .... + ( 22009 + 22010 )

=> A = 21.( 1 + 2 ) + 23.( 1 + 2 ) + .... + 22009.( 1 + 2 )

=> A = 21.3 + 23.3 + .... + 22009.3

=> A = 3.( 21 + 23 + .... + 22009 )

Vì 3 ⋮ 3 => A ⋮ 3 ( đpcm )

A = 21 + 22 + 2+ 24 + 2+ 26 + .... + 22007 + 22008 + 22009

=> A = ( 21 + 22 + 23 ) + ( 24 + 2+ 26 ) + .... + ( 22007 + 22008 + 22009 )

=> A = 21.( 1 + 2 + 2.2 ) + 24.( 1 + 2 + 2.2 ) + .... + 22007.( 1 + 2 + 2.2 )

=> A = 21.7 + 24.7 + .... + 22007.7

=> A = 7.( 21 + 24 + .... + 22007 )

Vì 7 ⋮ 7 => A ⋮ 7 ( đpcm )

Các ý sau tương tự .

22 tháng 12 2017

A=(2+2^2)+(2^3+2^4)+...+(2^2009+2^2010)

=6+2^3(1+2)+...+2^2009(1+2)

=6+2^3x3+....+2^2009x3

vậy A chia hết cho 3

chia hết cho 7 là tương tự chỉ khác là nhóm 3 số vào 1 nhóm

câu B tương tự câu A

 cho mình nhé