Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2 :
Với p là số nguyên tố lớn hơn 3 => p chỉ có dạng hoặc 3k + 1 hoặc 3k + 2
+ Nếu p = 3k + 1 => 2p + 1 = 2 . ( 3k + 1 ) + 1 = 6k + 2 + 1 = 6k + 3 \(⋮\)3 và lớn hơn 3 là hợp số ( loại )
Vì p ko có dạng 3k + 1 nên p có dạng 3k + 2
Với p = 3k + 2 thì 4p + 1 = 4 . ( 3k + 2 ) + 1 = 12k + 8 + 1 = 12k + 9 là hợp số
Vậy ...
Bài 1 :
Ta có \(1994^{100}-1,1994^{100},1994^{100}+1\) là 3 số tự nhiên liên tiếp nên phải có 1 số chia hết cho 3 mà \(1994^{100}\)có tổng các chữ số là \(1+9+9+4=123\)không chia hết 3 nên \(1994^{100}\)không chia hết cho 3 nên trong 2 số còn lại ít nhất có một số chia hết cho 3 ,số đó không thể là số nguyên tố
Vậy \(1994^{100}-1\)và \(1994^{100}+1\)không thể đồng thời là số nguyên tố
Bài 2
Do P là số nguyên tố lớn hơn 3 nên 4p không chia hết cho 3 ,tương tự \(4p+2=2\left(2p+4\right)\)cũng không chia hết cho 3
Mà \(4p,4p+1,4p+2\)là 3 số tự nhiên liên tiếp nên ít nhất phải có 1 số chia hêt cho 3 .Do đó \(4p+1⋮3\)mà \(4p+1>13\)nên \(4p+1\)là hợp số
Chúc bạn học tốt ( -_- )
Ta có : 2n -1 ; 2n và 2n + 1 là 3 số tự nhiên liên tiếp.
Trong 3 số tự nhiên liên tiếp chắc chắn có 1 số \(⋮\)3
Mà 2n - 1 là số nguyên tố => 2n + 1 không chia hết cho 3
và 2n ko chia hết cho 3 ( vì 2n là bội của 2 ko chia hết cho 3 và n>2)
=> 2n +1 chia hết cho\(⋮\)3
=> 2n +1 là hợp số
=> Điều cần chứng minh
Trả lời
a) Vì p là số nguyên tố lớn hơn 3
\(\Rightarrow\)p có dạng 3k+1 hoặc 3k+2 (k\(\in\)N*)
Với p=3k+1 \(\Rightarrow p+4=3k+1+4=3k+5\)là SNT => chọn
Với p=3k+2 \(\Rightarrow p+4=3k+2+4=3k+6\) chia hết cho 3 và lớn hơn 3
\(\Rightarrow\)p+4 là hợp số => Loại
\(\Rightarrow\)p=3k+1 thì \(p+8=3k+1+8=3k+9\)=> p+8 là hợp số => Chọn
b)Ta có abcd=1000a+100b+10c+d
=1000a+96b+8c+(4b+2c+d)
Ta thấy: 1000a chia hết cho 8
96b chia hết cho 8
8c chia hết cho 8
Theo đề ra ta có: 4b+2c+d chia hết cho 8
=> 1000a+96b+8c+(4b+2c+d) chia hết cho 8
=> abcd chia hết cho 8
Vậy nếu (d+2c+4b) chia hết cho 8 thì abcd chia hết cho 8
Câu 1:Giả sử p là 1 số nguyên tố >3, do p không chia hết cho 3 nên p có dạng 3k + 1 hoặc 3k + 2 nhưng do p +4 là số nguyên tố nên p không thể có dạng 3k + 2 vậy p có dạng 3k +1. Vậy p + 8 = 3k + 9 chia hết cho 3 nên nó là hợp số.
b, chịu
1) trả lời
4253 + 1422 =5775
mà 5775 chia hết cho 3;5
=>nó là hợp số
mình xin lỗi ấn nhầm bây giờ mk giải tiếp
giải
2) để 5x + 7 là số nguyên tố
=>5x+7 chia hết cho 5x+7 và 1
=>x thuộc (2;6)
3) trả lời
n.(n+1) là hợp số bởi vì
nếu n+1 là số lẻ=>n là số chẵn mà chẵn nhân với lẻ lại được số chẵn chia hết cho 2
nếu n+1 là số chẵn =>n là số lẻ mà lẻ nhân chẵn sẽ được số chẵn chia hết cho 2
mình xin lỗi mình chỉ làm dc thế thôi nhé, nếu bạn ko k thi thôi, ko sao
chào bạn
p và 2p+1 nguyên tố
* nếu p = 3 thì p và 2p+1 đều nguyên tố, 4p+1 = 13 nguyên tố
* xét p # 3
=> 2p không chia hết cho 3, và 2p+1 là số nguyên tố > 3 nên không chia hết cho 3
=> 2p+2 chia hết cho 3 (do 3 số nguyên liên tiếp phải có 1 số chia hết cho 3)
=> 2(2p+2) = 4p+4 = 4p+1+3 chia hết cho 3 => 4p+1 chia hết cho 3
kết luận: 4p+1 nguyên tố nếu p = 3, và là hợp số nếu p nguyên tố # 3
# là chia hết nhé!
A , p là số nguyên tố lớn hơn 3 nên p có dạng : 3k + 1 hoặc 3k + 2
Xét trường hợp p = 3k+1 . Ta có 2p + 1 = 2(3k+1)+1 = 6k + 2 +1 = 6k + 3 (chia hết cho 3 nên là hợp số) , loại
Xét trường hợp p = 3k+2 . Ta có 2p +1= 2(3k+2) +1 = 6k +4 +1 = 6k + 5 ( là số nguyên tố theo đề bài nên ta chọn trường hợp này)
Vậy 4p + 1 = 4(3k+2)+1 = 12k + 8 + 1 = 12k + 9 ta thấy 12k và 9 đều chia hêt cho 3 nên (12k+9) là hợp số
Do đó 4p + 1 là hợp số
=> đpcm