Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2\left(x+y\right)=5\left(y+z\right)=3\left(z+x\right)\)
\(\Leftrightarrow\frac{x+y}{15}=\frac{y+z}{6}=\frac{z+x}{10}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{z+x}{10}=\frac{y+z}{6}=\frac{\left(z+x\right)-\left(y+z\right)}{10-6}=\frac{x-y}{4}\)
\(\frac{x+y}{15}=\frac{z+x}{10}=\frac{\left(x+y\right)-\left(z+x\right)}{15-10}=\frac{y-z}{5}\)
Suy ra đpcm.
Cậu có chắc của lớp 6 không ???
Áp dụng Bất đẳng thức Cauchy-Schwarz dạng Engel , có :
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{\left(1+1+1\right)^2}{x+y+z}=\frac{9}{6}=\frac{3}{2}\)
Đẳng thức xảy ra : \(\Leftrightarrow\frac{1}{x}=\frac{1}{y}=\frac{1}{z}=\frac{1}{2}\)
Xét \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(x+y+z\right)=3+\frac{x}{y}+\frac{y}{x}+\frac{y}{z}+\frac{z}{y}+\frac{x}{z}+\frac{z}{x}\)
Với \(x,y,z\inℕ^∗\)áp dụng bất đẳng thức Cô si \(\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}.\frac{y}{x}}=2\),\(\frac{y}{z}+\frac{z}{y}\ge2\sqrt{\frac{y}{z}.\frac{z}{y}}=2\),\(\frac{x}{z}+\frac{z}{x}\ge2\sqrt{\frac{x}{z}.\frac{z}{x}}=2\)
\(\Rightarrow\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(x+y+z\right)\ge3+2+2+2=9\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}=\frac{9}{6}=\frac{3}{2}\left(x+y+z=6theogt\right)\)
Ta có:
\(\left(x+y+z\right)\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\)
\(=1+\frac{z}{x+y}+1+\frac{x}{y+z}+1+\frac{y}{z+x}=3+\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)\)
\(\Rightarrow x+y+z=\frac{3+\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)}{\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}}=\frac{3+\frac{7}{10}}{\frac{2}{5}}=\frac{37}{4}\)
Ta có :
\(\left(x+y+z\right)\left(\frac{1}{x+y}+\frac{1}{y+x}+\frac{1}{z+x}\right)\)
\(=1+\frac{z}{x+y}+1+\frac{x}{y+z}+1+\frac{y}{z+x}=3+\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)\)
\(\Rightarrow x+y+z=\frac{3+\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)}{\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}}=\frac{3+\frac{7}{10}}{\frac{2}{5}}=\frac{37}{4}\)
a./ \(\frac{x}{5}=\frac{y}{7}=\frac{z}{4}=\frac{x-y+z}{5-7+4}=\frac{-10}{2}=-5\)
\(\Rightarrow x=-25;y=-35;z=-20\)
b./ \(\frac{x}{5}=\frac{y}{-4}=\frac{z}{-7}=\frac{x+y-z}{5-4-\left(-7\right)}=\frac{-40}{6}=-5\)
\(\Rightarrow x=-25;y=20;z=35\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x+y+2015}{z}=\frac{y+z-2016}{x}=\frac{z+x+1}{y}.\)
\(=\frac{x+y+2015+y+z-2016+z+x+1}{x+y+z}\)\(=\frac{2\left(x+y+z\right)}{x+y+z}=2\)
Do đó x+y+z=1 => x+y=1-z => \(\frac{2016-z}{z}=2\Rightarrow2016-z=2z\Leftrightarrow2016=3z\)
=> z= 672
Tương tự : x= -2015/3; y=2/3
Bài 1:
a)\(\frac{x}{5}=\frac{-12}{20}\Rightarrow20x=5.\left(-12\right)=-60\Rightarrow x=-3\)
b)\(\frac{2}{y}=\frac{11}{-66}\Rightarrow2.\left(-66\right)=11y\Rightarrow11y=-132\Rightarrow y=-12\)
c)\(\frac{-3}{6}=\frac{x}{-2}=\frac{-18}{y}=\frac{-z}{24}\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{-3}{6}=\frac{x}{-2}\Rightarrow x=\frac{\left(-3\right)\left(-2\right)}{6}=1\\\frac{-3}{6}=\frac{-18}{y}\Rightarrow y=\frac{\left(-18\right).6}{-3}=36\\\frac{-3}{6}=\frac{-z}{24}\Rightarrow-z=\frac{\left(-3\right).24}{6}=-12\Rightarrow z=12\end{matrix}\right.\)
Bài 2:
\(\frac{-2}{x}=\frac{y}{3}\Rightarrow xy=\left(-2\right).3=-6\)
Mà \(x< 0< y\) nên ta có bảng sau:
\(x\) | \(-6\) | \(-3\) | \(-2\) | \(-1\) |
\(y\) | 1 | 2 | 3 | 6 |
Ta co:\(\frac{x}{x+y}\)<1\(\Rightarrow\)\(\frac{x}{x+y}\)<\(\frac{x+y}{x+y+z}\)(1)
\(\frac{y}{y+z}\)<1\(\Rightarrow\)\(\frac{y}{y+z}\)<\(\frac{y+x}{y+z+x}\)(2)
\(\frac{z}{z+x}\)<1\(\Rightarrow\)\(\frac{z}{z+x}\)<\(\frac{z+y}{z+x+y}\)(3)
Tu(1)(2)(3)\(\Rightarrow\)\(\frac{x}{x+y}\)+\(\frac{y}{y+z}\)+\(\frac{z}{z+x}\)< \(\frac{x+z}{x+y+z}\)+ \(\frac{y+x}{y+z+x}\) + \(\frac{z+y}{z+x+y}\)
\(\Rightarrow\)A <\(\frac{2x+2y+2z}{x+y+z}\)
\(\Rightarrow\)A < \(\frac{2\left(x+y+z\right)}{x+y+z}\)
\(\Rightarrow\)A< 2
Bạn định kiểm tra chỉ số thông minh IQ người khác hà mà sao biết bài toán rồi vẫn hỏi?