Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bđt Cauchy cho 2 số không âm :
\(x^2+\frac{1}{x}\ge2\sqrt[2]{\frac{x^2}{x}}=2.\sqrt{x}\)
\(y^2+\frac{1}{y}\ge2\sqrt[2]{\frac{y^2}{y}}=2.\sqrt{y}\)
Cộng vế với vế ta được :
\(x^2+y^2+\frac{1}{x}+\frac{1}{y}\ge2.\sqrt{x}+2.\sqrt{y}=2\left(\sqrt{x}+\sqrt{y}\right)\)
Vậy ta có điều phải chứng mình
Ta đi chứng minh:\(a^3+b^3\ge ab\left(a+b\right)\)
\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\)* đúng *
Khi đó:
\(\frac{1}{a^3+b^3+abc}\le\frac{1}{ab\left(a+b\right)+abc}=\frac{1}{ab\left(a+b+c\right)}=\frac{c}{abc\left(a+b+c\right)}\)
Tương tự:
\(\frac{1}{b^3+c^3+abc}\le\frac{a}{abc\left(a+b+c\right)};\frac{1}{c^3+a^3+abc}\le\frac{b}{abc\left(a+b+c\right)}\)
\(\Rightarrow LHS\le\frac{a+b+c}{abc\left(a+b+c\right)}=\frac{1}{abc}\)
a) Để \(\frac{15}{4x^2-12x+19}\le\frac{3}{2}\) thì \(15\cdot2\le3\cdot\left(4x^2-12x+19\right)\)
\(\Leftrightarrow30\le12x^2-36x+57\)
\(\Leftrightarrow30-12x^2+36x-57\le0\)
\(\Leftrightarrow-12x^2+36x-27\le0\)
\(\Leftrightarrow-12\left(x^2-3x+\frac{9}{4}\right)\le0\)
\(\Leftrightarrow-12\left(x-\frac{3}{2}\right)^2\le0\)(luôn đúng)
b) Để \(\frac{4x+3}{x^2+1}\le4\)
thì \(4x+3\le4\left(x^2+1\right)\)
\(\Leftrightarrow4x+3\le4x^2+4\)
\(\Leftrightarrow4x+3-4x^2-4\le0\)
\(\Leftrightarrow-4x^2+4x-1\le0\)
\(\Leftrightarrow-\left(4x^2-4x+1\right)\le0\)
\(\Leftrightarrow-\left(2x-1\right)^2\le0\)(luôn đúng)