K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A=1/2 *(1/1*2-1/2*3+1/2*3-1/3*4+........+1/98*99-1/99*100)

=1/2*(1/2-1/99*100)

=1/2*(4950-1/9900)

=4950/19800

14 tháng 4 2019

\(A=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{98\cdot99\cdot100}\)

\(A=\frac{1}{2}\left[\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+...+\frac{2}{98\cdot99\cdot100}\right]\)

\(A=\frac{1}{2}\left[\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+....+\frac{1}{98\cdot99}-\frac{1}{99\cdot100}\right]\)

\(A=\frac{1}{2}\left[\frac{1}{2}-\frac{1}{99\cdot100}\right]=\frac{1}{2}\cdot\frac{4949}{9900}=\frac{4949}{19800}\)

14 tháng 3 2017

=1+\(\frac{1}{2}\)-\(\frac{1}{3}\)+\(\frac{1}{2}\) -\(\frac{1}{3}\) -\(\frac{1}{4}\)+\(\frac{1}{3}\) - \(\frac{1}{4}\)-\(\frac{1}{5}\)+.....+\(\frac{1}{99}\)-\(\frac{1}{100}\)-\(\frac{1}{101}\)

=1+\(\frac{1}{101}\)

=\(\frac{102}{101}\)

14 tháng 3 2017

1/1.2.3 = 1/2 .[1/1.2 - 1 / 2.3]

1/2.3.4 = 1/2[ 1/2- 1/3 ] 

...................

1/99.100.101 = 1/2[ 1/99. 100 - 1/100.101]

=> A= 1/2 [ 1/1.2- 1/2.3 + 1/2.3 - 1/3.4 + 1/3.4 - 1/ 4.5 +.........+ 1/99 .100 - 1/100. 101]

A = 1/2 . [1/1.2 -1/100 .101]

A= 1/2 . 5049 /10100 = 5049 / 20200.

Mình nghĩ là vậy đó.

4 tháng 9 2016

Biến đổi vế trái ta có:

\(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+..+\frac{1}{98\cdot99\cdot100}\)

\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{99\cdot100}\right)=\frac{4949}{19800}=VP\)

=>đpcm

19 tháng 8 2018

\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{19.20.21}\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{19.20}-\frac{1}{20.21}\right)\)

\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{20.21}\right)\)

\(=\frac{1}{2}.\frac{209}{420}\)

\(=\frac{209}{840}\)

19 tháng 8 2018

\(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{19\cdot20\cdot21}\)

\(=\frac{1}{2}\left(\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+...+\frac{2}{19\cdot20\cdot21}\right)\)

\(=\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+\frac{1}{3\cdot4}-\frac{1}{4\cdot5}+...+\frac{1}{19\cdot20}-\frac{1}{20\cdot21}\right)\)

\(=\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{19\cdot21}\right)\)

bn tự lm tp

2 tháng 7 2018

\(C=\frac{1.2.3+2.3.4+3.4.5+4.5.6+5.6.7}{3.3.2.3.3.1+2.3.3.3.4.3+3.3.4.3.3.5+3.4.5.3.6.3+3.5.3.6.7.3}+\frac{8}{27}\)

\(C=\frac{1.2.3+2.3.4+3.4.5+4.5.6+5.6.7}{3^3.\left(1.2.3+2.3.4+3.4.5+4.5.6+5.6.7\right)}+\frac{8}{27}\)

\(C=\frac{1}{3^3}+\frac{8}{27}=\frac{1}{27}+\frac{8}{27}=\frac{9}{27}=\frac{1}{3}\)

Vậy C = \(\frac{1}{3}\)