\(\frac{27}{31}=\frac{2727}{3131}=\frac{272727}{313131}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2016

\(\frac{27}{31}=\frac{2727}{3131}=\frac{272727}{313131}\)

\(\frac{27}{31}=\frac{27.101}{31.101}=\frac{27.10101}{31.10101}\)

\(\frac{27}{31}=\frac{27}{31}=\frac{27}{31}\)

\(\Rightarrow\frac{27}{31}=\frac{2727}{3131}=\frac{272727}{313131}\)

15 tháng 9 2016

\(\frac{27}{31}=\frac{2727}{3131}=\frac{272727}{313131}\)

\(\frac{27}{31}=\frac{27\cdot101}{31\cdot101}=\frac{27\cdot10101}{31\cdot10101}\)

\(\Rightarrow\frac{27}{31}=\frac{2727}{3131}=\frac{272727}{313131}\)

15 tháng 9 2018

27 x \(\left(\frac{171717}{272727}+\frac{373737}{363636}\right)\)

= 27 x \(\left(\frac{17}{27}+\frac{37}{36}\right)\)

= 27 x \(\frac{17}{27}\)+  27 x \(\frac{37}{36}\)

= 17 + 27,75

= 44,75

15 tháng 9 2018

\(\frac{178}{4}\)bạn nhé

14 tháng 9 2016

a) \(\frac{1212}{1515}\):\(\frac{2727}{2525}\)

=   \(\frac{1212}{1515}\)* \(\frac{2525}{2727}\)

=     \(\frac{101.12}{101.15}\)* \(\frac{101.25}{101.27}\)

=      \(\frac{12}{15}\). \(\frac{25}{27}\)

=       \(\frac{20}{27}\)

b) ban co the viet ro hon de bai dc ko?

4 tháng 2 2016

Ta có : \(\frac{1}{31}>\frac{1}{40};\frac{1}{32}>\frac{1}{40};\frac{1}{33}>\frac{1}{40};...;\frac{1}{38}>\frac{1}{40};\frac{1}{39}>\frac{1}{40}\)

=> \(\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{39}>\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}=\frac{10}{40}=\frac{1}{4}\)  (1)

            \(\frac{1}{41}>\frac{1}{50};\frac{1}{42}>\frac{1}{50};\frac{1}{43}>\frac{1}{50};...;\frac{1}{48}>\frac{1}{50};\frac{1}{49}>\frac{1}{50}\)

=> \(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{49}>\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}=\frac{10}{50}=\frac{1}{5}\) (2)

            \(\frac{1}{51}>\frac{1}{60};\frac{1}{52}>\frac{1}{60};\frac{1}{53}>\frac{1}{60};...;\frac{1}{58}>\frac{1}{60};\frac{1}{59}>\frac{1}{60}\)

=> \(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{59}>\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}=\frac{10}{60}=\frac{1}{6}\)(3)

Từ (1) , (2) và (3) => \(\frac{1}{31}+...+\frac{1}{39}+\frac{1}{40}+\frac{1}{41}+...+\frac{1}{49}+\frac{1}{50}+\frac{1}{51}+...+\frac{1}{59}+\frac{1}{60}>\frac{1}{4}+\frac{1}{5}+\frac{1}{6}\)

=> \(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{60}>\frac{37}{60}>\frac{35}{60}=\frac{7}{12}\)

=> \(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{60}>\frac{7}{12}\)

=> \(A>\frac{7}{12}\)

Hài lòng chưa má? -_-

 

4 tháng 2 2016

tôi rất dốt toán CMR chắc chỉ còn cách tính A thôi

23 tháng 7 2020

hello

25 tháng 7 2017

A = 1 / 31 + 1 / 32 + 1 / 33 + ... + 1 / 89 + 1 / 90 ... 5 / 6

A = 5 / 6 = 1 / 2 + 1 / 3

Ta đặt B = 1 / 31 + 1 / 32 + 1 / 33 + ... + 1 / 60 ( 30 phân số )

          C = 1 / 61 + 1 / 62 + 1 / 63 + ... + 1 / 90 ( 30 phân số )

Ta có : B = 1 / 31 + 1 / 32 + 1 / 33 + ... + 1 / 60 > 1 / 60 + 1 / 60 + 1 / 60 + ... + 1 / 60 = 30 . 1 / 60 = 1 / 2

           C = 1 / 61 + 1 / 62 + 1 / 63 + ... + 1 / 90 >  1 / 90 + 1 / 90 + 1 / 90 + ... + 1 / 90 = 30 . 1 / 90 = 1 / 3

Vì A = B + C > 1 / 2 + 1 / 3 = 5 / 6 nên 1 / 31 + 1 / 32 + ... + 1 / 89 + 1 / 90 > 5 / 6

GIẢI VẦY MỚI GỌI LÀ GIẢI CHI TIẾT
 

Ta sẽ lấy 

\(1-\frac{1}{90}=\frac{89}{90}\)

Sau đó ta so sánh : 

\(\frac{89}{90}>\frac{5}{6}\)

k mình nhé !!!

28 tháng 4 2018

Bài làm

Ta đặt M=1/3+1/7+1/13+1/21+1/31+1/43+1/57+1/73+1/91
Vậy M<1/2+1/6+1/12+1/20+1/30+1/42+1/56+1/72+1/90 
       M< 1/2+1/2x3+1/3x4+1/4x5+1/5x6+1/6x7+1/7x8+1/8x9+1/9x10
      M< (1-1/2) +(1/2-1/3) +(1/3-1/4) +(1/4-1/5) +(1/5-1/6) +(1/6-1/7) +(1/7-1/8) +(1/8-1/9) +(1/9-1/10)
     M< 1-1/10 < 9/10      (1)
     Vì 9/10 < 1    (2)
     Từ(1) và (2) ta có : 1/3+1/7+1/13+1/21+1/31+1/43+1/57+1/73+1/91<1

30 tháng 7 2019

Giúp mình bài này với

30 tháng 7 2019

\(\frac{1}{2.2}+\frac{1}{4.4}+\frac{1}{6.6}+...+\frac{1}{200.200}\)

\(=\frac{1}{4}\left(1+\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{100.100}\right)\)

\(< \frac{1}{4}\left(1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)

\(=\frac{1}{4}\left(1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(=\frac{1}{4}\left(1+1-\frac{1}{100}\right)=\frac{1}{4}\left(2-\frac{1}{100}\right)=\frac{1}{2}-\frac{1}{400}< \frac{1}{2}\)