Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(1.2+2.3+...+n\left(n+1\right)=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)(@@)
+) Với n = 1 ta có: \(1.2=\frac{1.\left(1+1\right)\left(1+2\right)}{3}\) đúng
=> (@@) đúng với n = 1
+) G/s (@@) đúng cho đến n
+) Ta chứng minh (@@ ) đúng với n + 1
Ta có: \(1.2+2.3+...+n\left(n+1\right)+\left(n+1\right)\left(n+2\right)\)
\(=\frac{n\left(n+1\right)\left(n+2\right)}{3}+\left(n+1\right)\left(n+2\right)\)
\(=\frac{\left(n+1\right)\left(n+2\right)\left(n+3\right)}{3}\)
=> (@@) đúng với n + 1
Vậy (@@ ) đúng với mọi số tự nhiên n khác 0
b) \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{2^n}=\frac{2^n-1}{2^n}\) (@)
Ta chứng minh (@) đúng với n là số tự nhiên khác 0 quy nạp theo n
+) Với n = 1 ta có: \(\frac{1}{2}=\frac{2^1-1}{2^1}\) đúng
=> (@) đúng với n = 1
+) G/s (@) đúng cho đến n
+) Ta cần chứng minh (@) đúng với n + 1
Ta có: \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{2^n}+\frac{1}{2^{n+1}}=\frac{2^n-1}{2^n}+\frac{1}{2^{n+1}}=\frac{2^{n+1}-2+1}{2^{n+1}}=\frac{2^{n+1}-1}{2^{n+1}}\)
=> (@) đúng với n + 1
Vậy (@) đúng với mọi số tự nhiên n khác 0.
(1/12+3 1/6-30,75).x -8 = (3/5+0,415+1/200):0,01
(1/12+19/6-123/4).x-8=(3/5+83/200+1/200):1/100
-55/2.x-8=51/50:1/100
-55/2.x-8=102
-55/2.x=102+8=110
x=110:-55/2=-4
a. \(\left(2^2\right)^{\left(2^2\right)}=\left(2^2\right)^4=2^8=256\)
b.\(\frac{8^{14}}{4^{12}}=\frac{\left(2^3\right)^{14}}{\left(2^2\right)^{12}}=\frac{2^{42}}{2^{24}}=2^{18}=262144\)
c.\(\frac{\left(-\frac{5}{7}\right)^{n+1}}{\left(-\frac{5}{7}\right)^n}=\left(-\frac{5}{7}\right)^{n+1-n}=\left(-\frac{5}{7}\right)^1=-\frac{5}{7}\)
Bài 1: <Cho là câu a đi>:
a. \(\frac{1}{2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{49}{50}\)
\(\rightarrow\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{49}{50}\)
\(\rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{49}{50}\)
\(\rightarrow1-\frac{1}{x+1}=\frac{49}{50}\)
\(\rightarrow\frac{1}{x+1}=1-\frac{49}{50}=\frac{1}{50}\)
\(\rightarrow x+1=50\rightarrow x=49\)
Vậy x = 49.
a, \(\frac{64}{2^n}=16\Leftrightarrow\frac{64}{2^n}=\frac{64}{4}\Leftrightarrow2^n=4\Leftrightarrow n=2\)
b, \(\left(\frac{1}{3}\right)^{2n-1}=\left(\frac{1}{3}\right)^3\Leftrightarrow2n-1=3\Leftrightarrow n=2\)
a)\(\frac{64}{2^n}=16\Leftrightarrow2^n.16=64\Leftrightarrow2^n=4\Leftrightarrow2^n=2^2\Leftrightarrow n=2\)
b)\(\left(\frac{1}{3}\right)^{2n-1}=\frac{1}{27}\)
\(\Leftrightarrow\left(\frac{1}{3}\right)^{2n-1}=\left(\frac{1}{3}\right)^3\)
\(\Leftrightarrow2n-1=3\Leftrightarrow2n=4\Leftrightarrow n=2\)
\(\frac{1}{n}-\frac{1}{n+1}=\frac{n+1}{n\left(n+1\right)}-\frac{n}{n\left(n+1\right)}=\frac{1}{n\left(n+1\right)}\)(1)
\(\frac{1}{n}.\frac{1}{n+1}=\frac{1}{n\left(n+1\right)}\)(2)
Từ (1) và (2) suy ra \(\frac{1}{n}-\frac{1}{n+1}=\frac{1}{n}.\frac{1}{n+1}\)(đpcm)
\(\frac{1}{n}-\frac{1}{\left(n+1\right)}\)
\(=\frac{n+1}{n.\left(n+1\right)}-\frac{n}{\left(n+1\right).n}\)
\(=\frac{n+1-n}{n.\left(n+1\right)}\)
\(=\frac{1}{n.\left(n+1\right)}\)