\(\frac{1}{4028}< \left(\frac{1}{2}.\frac{3}{4}...\frac{2013}{2014}\ri...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2019

Đặt: \(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.\frac{7}{8}.....\frac{2013}{2014}\) (1)

Ta thấy \(A< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}.\frac{8}{9}.....\frac{2014}{2015}\)

Do đó nhân vế với vế, ta được: 

\(A^2< \frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}.\frac{5}{6}.\frac{6}{7}.\frac{7}{8}.\frac{8}{9}.....\frac{2013}{2014}.\frac{2014}{2015}\)

\(\Rightarrow A^2< \frac{1}{2015}\)

Mặt khác, \(A>\frac{1}{2}.\frac{4}{5}.\frac{6}{7}.\frac{8}{9}.....\frac{2014}{2015}\) (2)

Từ (1) và (2), ta được: 

\(A^2>\frac{1}{4}.\left(\frac{3}{4}.\frac{4}{5}.\frac{5}{6}.\frac{6}{7}.\frac{7}{8}.\frac{8}{9}.....\frac{2013}{2014}.\frac{2014}{2015}\right)\)

\(\Rightarrow A^2>\frac{1}{4}.\frac{3}{2015}\Rightarrow A^2>\frac{3}{8060}>\frac{1}{4028}\)

7 tháng 4 2017

\(\frac{1}{4028}< \frac{1}{2}.....\frac{2013}{2014}< \frac{1}{2015}\)

Xét tích: \(\frac{1}{2}.....\frac{2013}{2014}\)    \(\Rightarrow\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{2013}{2014}\)\(=\frac{1.2.3...2013}{2.3.4...2014}\)\(=\frac{1}{2014}\)

\(\Rightarrow\frac{1}{4028}< \frac{1}{2014}< \frac{1}{2015}\)( Vô lí )

24 tháng 10 2018

gap A len 1/2

24 tháng 10 2018

\(2A=1+\frac{1}{2}+\left(\frac{1}{2}\right)^2+...+\left(\frac{1}{2}\right)^{2015}\)

\(\Rightarrow2A-A=1-\left(\frac{1}{2}\right)^{2014}\Rightarrow A=1-\left(\frac{1}{2}\right)^{2014}< 1\)

11 tháng 12 2016

\(B=\frac{1}{2}+\left(\frac{1}{2}\right)^2+...+\left(\frac{1}{2}\right)^{2015}\)

\(B=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}\)

\(2B=2\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}\right)\)

\(2B=1+\frac{1}{2}+...+\frac{1}{2^{2014}}\)

\(2B-B=\left(1+\frac{1}{2}+...+\frac{1}{2^{2014}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}\right)\)

\(B=1-\frac{1}{2^{2015}}< 1\). Vậy ta có điều phải chứng minh

9 tháng 12 2019

Ta có: \(\frac{1}{2^2}=\frac{1}{2.2}< \frac{1}{1.2}\)

Tương tự : \(\frac{1}{3^2}< \frac{1}{2.3}\)\(\frac{1}{4^2}< \frac{1}{3.4}\); ......... ; \(\frac{1}{2014^2}< \frac{1}{2013.2014}\)

\(\Rightarrow S< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+........+\frac{1}{2013.2014}\)               

        \(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.........+\frac{1}{2013}-\frac{1}{2014}\)

        \(=1-\frac{1}{2014}=\frac{2013}{2014}\)

\(\Rightarrow S< \frac{2013}{2014}\left(đpcm\right)\)

15 tháng 6 2019

Đề là gì thế bạn? Tính hay So sánh?

15 tháng 6 2019

đề là tính các bạn ạ. Mình xin lỗi vì quên ko ghi đề.