Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vào đây nhé: Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
\(C=\frac{\frac{1}{2008}-\frac{1}{2009}-\frac{1}{2010}}{\frac{5}{2008}-\frac{5}{2009}-\frac{5}{2010}}+\frac{\frac{2}{2007}-\frac{2}{2008}-\frac{2}{2009}}{\frac{3}{2007}-\frac{3}{2008}-\frac{3}{2009}}\)
\(=\frac{\frac{1}{2008}-\frac{1}{2009}-\frac{1}{2010}}{5.\left(\frac{1}{2008}-\frac{1}{2009}-\frac{1}{2010}\right)}+\frac{2.\left(\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}\right)}{3.\left(\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}\right)}\)
\(=\frac{1}{5}+\frac{2}{3}\)
\(=\frac{13}{15}\)
câu hỏi hay......nhưng tui xin nhường cho các bn khác
Hãy tích đúng cho tui nha
THANKS
\(P=\frac{1}{3^2}-\frac{1}{3^4}+....+\frac{1}{3^{2006}}-\frac{1}{3^{2008}}\)
\(\Rightarrow9P=1-\frac{1}{3^2}+....+\frac{1}{3^{2004}}-\frac{1}{3^{2006}}\)
\(\Rightarrow9P+P=\left(1-\frac{1}{3^2}+....+\frac{1}{3^{2004}}-\frac{1}{3^{2006}}\right)+\left(\frac{1}{3^2}-\frac{1}{3^4}+....+\frac{1}{3^{2006}}-\frac{1}{3^{2008}}\right)\)
\(\Rightarrow10P=1-\frac{1}{3^{2008}}\)
\(\Rightarrow P=\frac{1}{10}-\frac{1}{3^{2008}\cdot10}< \frac{1}{10}=0,1\)
Vậy \(P< 0,1\)
Đặt A =\(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{2008}{3^{2008}}\)
Suy ra 3A = \(1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{2008}{3^{2007}}\)=> 2A = 3A - A = \(1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{2008}{3^{2007}}-\frac{1}{3}-\frac{2}{3^2}-\frac{3}{3^3}-...-\frac{2008}{3^{3008}}\)= \(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2007}}-\frac{2008}{3^{2008}}\)
= \(\frac{3}{2}-\frac{1}{2.3^{2007}}\)Suy ra A = \(\frac{3}{4}-\frac{1}{8.3^{2007}}\)<\(\frac{3}{4}\)(ĐPCM)