K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2016

Đặt \(A=\frac{1}{2.3}+\frac{1}{4.5}+\frac{1}{6.7}+...+\frac{1}{100.101}\)

\(\Rightarrow A< \left(\frac{1}{2.3}+\frac{1}{4.5}+\frac{1}{6.7}+...+\frac{1}{100.101}\right)+\left(\frac{1}{3.4}+\frac{1}{5.6}+\frac{1}{7.8}+...+\frac{1}{99.100}\right)\)

\(\Rightarrow A< \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{99.100}+\frac{1}{100.101}\)

\(\Rightarrow A< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{100}+\frac{1}{100}-\frac{1}{101}\)

\(\Rightarrow A< \frac{1}{2}-\frac{1}{101}< \frac{1}{2}\)

\(\Rightarrow A< \frac{1}{2}\)

Vậy \(\frac{1}{2.3}+\frac{1}{4.5}+\frac{1}{6.7}+...+\frac{1}{100.101}< 2\) (đpcm)

30 tháng 4 2016

Mai ơi, bài này thầy dạy hôm chiều cậu nghỉ đóoaoa

NV
30 tháng 12 2020

1. Đề thiếu

2. BĐT cần chứng minh tương đương:

\(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)

Ta có:

\(a^4+b^4+c^4\ge\dfrac{1}{3}\left(a^2+b^2+c^2\right)^2\ge\dfrac{1}{3}\left(ab+bc+ca\right)^2\ge\dfrac{1}{3}.3abc\left(a+b+c\right)\) (đpcm)

3.

Ta có:

\(\left(a^6+b^6+1\right)\left(1+1+1\right)\ge\left(a^3+b^3+1\right)^2\)

\(\Rightarrow VT\ge\dfrac{1}{\sqrt{3}}\left(a^3+b^3+1+b^3+c^3+1+c^3+a^3+1\right)\)

\(VT\ge\sqrt{3}+\dfrac{2}{\sqrt{3}}\left(a^3+b^3+c^3\right)\)

Lại có:

\(a^3+b^3+1\ge3ab\) ; \(b^3+c^3+1\ge3bc\) ; \(c^3+a^3+1\ge3ca\)

\(\Rightarrow2\left(a^3+b^3+c^3\right)+3\ge3\left(ab+bc+ca\right)=9\)

\(\Rightarrow a^3+b^3+c^3\ge3\)

\(\Rightarrow VT\ge\sqrt{3}+\dfrac{6}{\sqrt{3}}=3\sqrt{3}\)

NV
30 tháng 12 2020

4.

Ta có:

\(a^3+1+1\ge3a\) ; \(b^3+1+1\ge3b\) ; \(c^3+1+1\ge3c\)

\(\Rightarrow a^3+b^3+c^3+6\ge3\left(a+b+c\right)=9\)

\(\Rightarrow a^3+b^3+c^3\ge3\)

5.

Ta có:

\(\dfrac{a}{b}+\dfrac{b}{c}\ge2\sqrt{\dfrac{a}{c}}\) ; \(\dfrac{a}{b}+\dfrac{c}{a}\ge2\sqrt{\dfrac{c}{b}}\) ; \(\dfrac{b}{c}+\dfrac{c}{a}\ge2\sqrt{\dfrac{b}{a}}\)

\(\Rightarrow\sqrt{\dfrac{b}{a}}+\sqrt{\dfrac{c}{b}}+\sqrt{\dfrac{a}{c}}\le\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}=1\)

   1/1.2 + 1/2.3 + 1/3.4 + .......................+ 1/99.100    

= 1 - 1/2 + 1/2 - 1/3 +1/3 - 1/4 +..................+ 1/99 - 1/100 

= 1 - 1/100 

= 99/100 

30 tháng 4 2016

1/1.2 + 1/2.3 + 1/3.4 + ... + 1/99.100 = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/99 - 1/100

= 1 - 1/100

= 99/100

Ma 99/100 < 1.

=> 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/99.100 < 1 (dccm)

13 tháng 8 2019

Đặt P = ... 

* Chứng minh P > 1/2 : 

\(P\ge\frac{\left(1+1+1+...+1\right)^2}{n+1+n+2+n+3+...+n+n}\)

Từ \(n+1\) đến \(n+n\) có n số => tổng \(\left(n+1\right)+\left(n+2\right)+\left(n+3\right)+...+\left(n+n\right)\) là: 

\(\frac{n\left(n+n+n+1\right)}{2}=\frac{n\left(3n+1\right)}{2}\)

\(\Rightarrow\)\(P\ge\frac{n^2}{\frac{n\left(3n+1\right)}{2}}=\frac{2n}{3n+1}\)

Mà \(n>1\)\(\Leftrightarrow\)\(4n>3n+1\)\(\Leftrightarrow\)\(\frac{n}{3n+1}>\frac{1}{2}\)

\(\Rightarrow\)\(P>\frac{1}{2}\)

* Chứng minh P < 3/4 : 

Có: \(\frac{1}{n+1}\le\frac{1}{4}\left(\frac{1}{n}+1\right)\)

\(\frac{1}{n+2}\le\frac{1}{4}\left(\frac{1}{n}+\frac{1}{2}\right)\)

\(\frac{1}{n+3}\le\frac{1}{4}\left(\frac{1}{n}+\frac{1}{3}\right)\)

... 

\(\frac{1}{n+n}=\frac{1}{2n}=\frac{1}{4}\left(\frac{1}{n}+\frac{1}{n}\right)\)

\(\Rightarrow\)\(P\le\frac{1}{4}\left(\frac{1}{n}+1+\frac{1}{n}+\frac{1}{2}+\frac{1}{n}+\frac{1}{3}+...+\frac{1}{n}+\frac{1}{n}\right)\)

\(\Leftrightarrow\)\(P\le\frac{1}{4}\left(\frac{1}{n}+\frac{1}{n}+\frac{1}{n}+...+\frac{1}{n}\right)+\frac{1}{4}\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{n}\right)\)

\(\Leftrightarrow\)\(P\le\frac{1}{4}\left(n.\frac{1}{n}\right)+\frac{1}{4}\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{n}\right)< \frac{1}{4}+\frac{1}{4}=\frac{2}{4}< \frac{3}{4}\) ( do n>1 ) 

\(\Rightarrow\)\(P< \frac{3}{4}\)

28 tháng 7 2016

\(\frac{1}{25}\)<1

6 tháng 2 2020

à thôi cảm ơn mình ra rồi ạ

AH
Akai Haruma
Giáo viên
9 tháng 11 2019

Lời giải:

BĐT cần chứng minh tương đương với:

\((x+y+z)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{9}{x+y+z}\right)\geq (x+y+z)\left(\frac{4}{x+y}+\frac{4}{y+z}+\frac{4}{z+x}\right)\)

\(\Leftrightarrow 12+\frac{y+z}{x}+\frac{x+z}{y}+\frac{x+y}{z}\geq 12+\frac{4x}{y+z}+\frac{4y}{x+z}+\frac{4z}{x+y}\)

\(\Leftrightarrow (\frac{y}{x}+\frac{y}{z}-\frac{4y}{x+z})+(\frac{z}{x}+\frac{z}{y}-\frac{4z}{x+y})+(\frac{x}{y}+\frac{x}{z}-\frac{4x}{y+z})\geq 0\)

\(\Leftrightarrow \frac{y(x-z)^2}{xz(x+z)}+\frac{z(x-y)^2}{xy(x+y)}+\frac{x(y-z)^2}{yz(y+z)}\geq 0\)

(luôn đúng với mọi $x,y,z>0$)

Do đó ta có đpcm.
Dấu "=" xảy ra khi $x=y=z$

30 tháng 10 2020

Bổ đề 1: Với m, n < 1 ta có bất đẳng thức:

\(\frac{1}{1+m^2}+\frac{1}{1+n^2}\le\frac{2}{1+mn}\).

Thật vậy, bất đẳng thức trên tương đương với: \(\left(mn-1\right)\left(m-n\right)^2\le0\) (luôn đúng).

Bổ đề 2: Với m, n, p < 1 ta có bất đẳng thức:

\(\frac{1}{1+m^3}+\frac{1}{1+n^3}+\frac{1}{1+p^3}\le\frac{3}{1+mnp}\left(2\right)\).

Thật vậy, áp dụng bổ đề (1) ta có:

\(VT_{\left(2\right)}=\left(\frac{1}{1+m^3}+\frac{1}{1+n^3}\right)+\left(\frac{1}{1+p^3}+\frac{1}{1+mnp}\right)-\frac{1}{1+mnp}\le\frac{2}{1+\sqrt{m^3n^3}}+\frac{2}{1+\sqrt{mnp^4}}-\frac{1}{1+mnp}\le\frac{4}{1+\sqrt[4]{m^3n^3.mnp^4}}-\frac{1}{1+mnp}=\frac{4}{1+mnp}-\frac{1}{1+mnp}=\frac{3}{1+mnp}\left(đpcm\right)\).

Quay trở lại bài toán.

Đặt \(\left(\sqrt[3]{a},\sqrt[3]{b},\sqrt[3]{c}\right)=\left(x,y,z\right)\). Ta có: \(0< x,y,z< 1\).

BĐT cần chứng minh trở thành:

\(\frac{1}{1+x^3+y^3}+\frac{1}{1+y^3+z^3}+\frac{1}{1+z^3+x^3}\le\frac{3}{1+2xyz}\left(1\right)\).

Áp dụng BĐT AM - GM và bổ đề 2 ta có: \(VT_{\left(1\right)}\le\frac{1}{1+\left(\sqrt[3]{2}\sqrt{xy}\right)^3}+\frac{1}{1+\left(\sqrt[3]{2}\sqrt{yz}\right)^3}+\frac{1}{1+\left(\sqrt[3]{2}\sqrt{zx}\right)^3}\le\frac{3}{1+\sqrt[3]{2}\sqrt[3]{2}\sqrt[3]{2}\sqrt{xy.yz.zx}}=\frac{3}{1+2xyz}=VP_{\left(1\right)}\left(đpcm\right)\)

30 tháng 10 2020

Bạn bổ sung cho mình thêm điều kiện ở hai bổ đề:

Bổ đề 1: Thêm m, n > 0.

Bổ đề 2: Thêm m, n, p > 0.

19 tháng 8 2020

Đặt \(P=\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}+\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)

Do x,y,z là các số thực dương nên ta biến đổi \(P=\frac{1}{\sqrt{1+\frac{1}{x^2}}}+\frac{1}{\sqrt{1+\frac{1}{y^2}}}+\frac{1}{\sqrt{1+\frac{1}{z^2}}}+\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)

Đặt \(a=\frac{1}{x^2};b=\frac{1}{y^2};c=\frac{1}{z^2}\left(a,b,c>0\right)\)thì \(xy+yz+zx=\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}=1\)và \(P=\frac{1}{\sqrt{1+a}}+\frac{1}{\sqrt{1+b}}+\frac{1}{\sqrt{1+c}}+a+b+c\)

Biến đổi biểu thức P=\(\left(\frac{1}{2\sqrt{a+1}}+\frac{1}{2\sqrt{a+1}}+\frac{a+1}{16}\right)+\left(\frac{1}{2\sqrt{b+1}}+\frac{1}{2\sqrt{b+1}}+\frac{b+1}{16}\right)\)\(+\left(\frac{1}{2\sqrt{c+1}}+\frac{1}{2\sqrt{c+1}}+\frac{c+1}{16}\right)+\frac{15a}{16}+\frac{15b}{16}+\frac{15c}{b}-\frac{3}{16}\)

Áp dụng Bất Đẳng Thức Cauchy ta có

\(P\ge3\sqrt[3]{\frac{a+1}{64\left(a+1\right)}}+3\sqrt[3]{\frac{b+1}{64\left(b+1\right)}}+3\sqrt[3]{\frac{c+1}{64\left(c+1\right)}}+\frac{15a}{16}+\frac{15b}{16}+\frac{15c}{16}-\frac{3}{16}\)

\(=\frac{33}{16}+\frac{15}{16}\left(a+b+c\right)\ge\frac{33}{16}+\frac{15}{16}\cdot3\sqrt[3]{abc}\)

Mặt khác ta có \(1=\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\ge3\sqrt[3]{\frac{1}{abc}}\Leftrightarrow abc\ge27\)

\(\Rightarrow P\ge\frac{33}{16}+\frac{15}{16}\cdot3\sqrt[3]{27}=\frac{33}{16}+\frac{15}{16}\cdot9=\frac{21}{2}\)

Dấu "=" xảy ra khi a=b=c hay \(x=y=z=\frac{\sqrt{3}}{3}\)

1 tháng 12 2019

bđt \(\Leftrightarrow\)\(\Sigma_{cyc}\frac{a^2}{2}+\Sigma_{cyc}\frac{a}{bc}\ge\frac{9}{2}\)

mặt khác: \(\Sigma_{cyc}\frac{a}{bc}=\frac{1}{2}\Sigma_{cyc}\left(\frac{b}{ca}+\frac{c}{ab}\right)\ge\Sigma\frac{1}{a}\)\(\Rightarrow\)\(\Sigma_{cyc}\frac{a}{bc}\ge\Sigma_{cyc}\frac{1}{a}\)

do đó cần CM: \(\Sigma_{cyc}\frac{a^2}{2}+\Sigma_{cyc}\frac{1}{a}\ge\frac{9}{2}\) (1) 

\(VT_{\left(1\right)}=\Sigma_{cyc}\left(\frac{a^2}{2}+\frac{1}{2a}+\frac{1}{2a}\right)\ge3.\frac{3}{2}=\frac{9}{2}\)

"=" \(\Leftrightarrow\)\(a=b=c=1\)