K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2017

Đặt A=\(\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2011^2}\)

Ta có:\(\frac{1}{4^2}< \frac{1}{3\cdot4}=\frac{1}{3}-\frac{1}{4}\)

         \(\frac{1}{5^2}< \frac{1}{4\cdot5}=\frac{1}{4}-\frac{1}{5}\)

               .............................

          \(\frac{1}{2011^2}< \frac{1}{2010\cdot2011}=\frac{1}{2010}-\frac{1}{2011}\)

\(\Rightarrow A< \frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\cdot\cdot\cdot+\frac{1}{2010}-\frac{1}{2011}\)

         \(=\frac{1}{3}-\frac{1}{2011}< \frac{1}{3}\)

Vậy A<\(\frac{1}{3}\)hay \(\frac{1}{4^2}+\frac{1}{5^2}+\cdot\cdot\cdot+\frac{1}{2011^2}< \frac{1}{3}\)

26 tháng 4 2017

\(\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2011^2}< \frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{2010\cdot2011}\)

Gọi \(\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{2010\cdot2011}\)là \(S\)

Ta có:

\(S=\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{2010\cdot2011}\)

\(=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2010}-\frac{1}{2011}\)

\(=\frac{1}{3}-\frac{1}{2011}< \frac{1}{3}\)

Vì \(\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2011^2}< S\)mà \(S< \frac{1}{3}\)\(\Rightarrow\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2011^2}< \frac{1}{3}\)

4 tháng 3 2018

mik cũng đang cần giải bài này ai piết thì giải giùm vs nha!

càng nhanh càng tốt

Tham khảo nha bạn :

Câu hỏi của Trần Minh Hưng - Toán lớp | Học trực tuyến

27 tháng 6 2018

Nhận xét: mẫu số của mỗi phân số thuộc số bị trừ trong phép tính trên là số thứ tự của phân số đó trong dãy trên.

Từ đó, ta biết được rằng dãy trên ( số bị trừ có 100 phân số )

\(100-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)=\left(1+1+1+...+1\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)

( Tách 100 thành 100 số 1 )

                                                                          \(=\left(1-1\right)+\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)+...+\left(1-\frac{1}{100}\right)\)

                                                                          \(=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}...+\frac{99}{100}\left(đpcm\right).\)