K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2015

Đặt A = \(\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{2015!}\)

A < \(1+\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{2014.2015}\)

A < \(1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{2014}-\frac{1}{2015}\)

A < \(2-\frac{1}{2015}\)< 2 < \(2\left(\frac{135^2+136}{136^2-135}\right)\)

=> A < \(2\left(\frac{135^2+136}{136^2-135}\right)\)(Đpcm)