\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}=\frac{1}{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2015

1/1.2+1/3.4+1/5.6+...+1/49.50=1/26+1/27+...+1/50

=1/1-1/2+1/3-1/4+...+1/49-1/50

=(1/1+1/3+...+1/49)-(1/2+1/4+...+1/50)

=(1/1+1/2+1/3+...+1/49+1/50)-2(1/2+1/4+...+1/50)

=1/1+1/2+1/3+...+1/50-1-1/2-1/3-...-1/25

=1/26+1/27+...+1/50 (đpcm)

7 tháng 10 2016

bn ơi bn có thê

rhuowngs dẫn mình 

làm ko vì

mai mình ucngx

có bài này

2 tháng 6 2017

Ta có :

\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{49}-\frac{1}{50}\)

\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{49}+\frac{1}{50}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{49}+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}\right)\)

\(=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\left(đpcm\right)\)

9 tháng 6 2017

Ta có

\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{49}-\frac{1}{50}\)

\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{49}+\frac{1}{50}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)-\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}\right)\)

10 tháng 7 2016

\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{49}-\frac{1}{50}\)

\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{49}+\frac{1}{50}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{49}+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}\right)\)

\(=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\)

=> đpcm

Ủng hộ mk nha ^_-

10 tháng 7 2016

đpcm là j z ạ

16 tháng 7 2017

Đặt \(A=\frac{1}{1\times2}+\frac{1}{3\times4}+\frac{1}{5\times6}+....+\frac{1}{49\times50}\)

Dễ thấy\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+....+\frac{1}{49}-\frac{1}{50}\)

Do đó

\(A=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{49}+\frac{1}{50}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+....+\frac{1}{50}\right)\)

\(=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{49}+\frac{1}{50}-\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{25}\right)\)

\(=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+....+\frac{1}{50}\)

22 tháng 7 2017

cam on nha

3 tháng 7 2016

\(\frac{1}{1.2}+\frac{1}{3.4}+........+\frac{1}{49.50}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{49}-\frac{1}{50}\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+......+\frac{1}{49}+\frac{1}{50}-2\left(\frac{1}{2}+\frac{1}{4}+.....+\frac{1}{50}\right)\)

\(=1+\frac{1}{2}+......+\frac{1}{50}-\left(1+\frac{1}{2}+....+\frac{1}{25}\right)\)

\(=\frac{1}{26}+\frac{1}{27}+........+\frac{1}{50}\)

\(\Rightarrowđpcm\)

3 tháng 7 2016

ta có:1/1.2+1/3.4+1/5.6+...+1/49.50=>1-1/2+1/3-1/4+1/5-1/6+...+1/49-1/50=>(1+1/3+1/5+1/7+...+1/49)-(1/2+1/4+1/6+...+1/50)=>(1+1/2+1/3+...+1/49+1/50)-(1/2+1/4+1/6+...+1/50).2=>(1+1/2+1/3+...+1/49+1/50) -( 1+1/2+1/3+...+1/25)=>1/26+1/27+1/28+...+1/50=1/26+1/27+1/28+...+1/50hay 1/1.2+1/3.4+1/5.6+...+1/49.50=1/26+1/27+1/28+...+1/50

Bấm mình nha

15 tháng 4 2016

A=1/1.2+1/3.4+.....+1/49.50

 =1-1/2+1/3-1/4+...+1/49-1/50=(1+1/3+1/5+...+1/49) - (1/2+1/4+1/6+...+1/50)

 =(1+1/3+1/5+...+1/49)+(1/2+1/4+1/6+...+1/50)-2.(1/2+1/4+1/6+...+1/50)

 =(1+1/2+1/3+1/4+...+1/49+1/50) - (1+1/2+1/3+...1/25)

 =1/26+1/27+...1/50

Vậy .........

1 tháng 7 2016

Bài làm:

Toán lớp 6

5 tháng 5 2019

\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

5 tháng 5 2019

Nhầm tưởng tính tích :v

Ta có :

\(B=\frac{1}{50}+\frac{1}{51}+...+\frac{1}{99}+\frac{1}{100}< \frac{1}{51}+\frac{1}{51}+...+\frac{1}{51}=50.\frac{1}{51}=\frac{50}{51}< \frac{99}{100}\)

\(\Leftrightarrow A>B\)

11 tháng 5 2020

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)

\(A=1-\frac{1}{6}=\frac{5}{6}\)

\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{n}-\frac{1}{n+1}\)

\(B=1-\frac{1}{n+1}=\frac{n}{n+1}\)