Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(B=3+3^3+3^5+...+3^{1991}\)
\(=\left(3+3^3+3^5\right)+\left(3^7+3^9+3^{11}\right)+...+\left(3^{1987}+3^{1989}+3^{1991}\right)\)
\(=3\left(1+3^2+3^4\right)+3^7\left(1+3^2+3^4\right)+...+3^{1987}\left(1+3^2+3^4\right)\)
\(=91\left(3+3^7+...+3^{1987}\right)⋮13^{\left(đpcm\right)}\)( vì 91 chia hết cho 33)
Phần còn lại chứng minh tương tự


A = 2 + 22 + 23 +......+ 260
-> A = ( 2 + 22 ) + ( 23 + 24 ) + ....+ ( 259 + 260 )
-> A = 2.( 1+2 ) + 23.( 1+2) +......+ 259.( 1+2)
-> A = 2.3 + 23.3 +......+ 259.3
-> A= 3.( 2 + 23 +.....+ 259)
Vì 3 chia hết cho 3
-> 3.( 2 + 23 +...+259)
Vậy A chia hết cho 3
A = 2 + 22 + 23 +.......+ 260
-> A = ( 2 + 22 + 23 ) +.......+ ( 258 + 259 + 260 )
-> A = 2.( 1 + 2 + 22 ) +......+ 258 .( 1 + 2 + 22 )
-> A = 2.7 +.....+ 258.7
-> A = 7.( 2 + .....+ 258 )
Vì 7 chia hết cho 7
-> 7.( 2+....+ 258 )
Vậy A chia hết cho 7
A = 2 + 22 + 23 +......+ 260
-> A = ( 2 + 22 + 23 + 24 ) +.....+ ( 257 + 258 + 259 + 260 )
-> A = 2.( 1 + 2 + 22 + 23 ) +.....+ 257.( 1+ 2 + 22 + 23 )
-> A = 2.15 + ......+ 257.15
-> A = 15.( 2 +.... + 257 )
Vì 15 chia hết cho 15
-> 15.( 2 +....+ 257 )
Vậy A chia hết cho 15

Ta có:
E=1+3+3^2+3^3+3^4+...+3^1991
E=(1+3+3^2)+(3^3+3^4+3^5)+...+(3^1989+3^1990+3^1991)
E=13+3^3(1+3+3^2)+...+3^1989(1+3+3^2)
E=13+3^3.13+...+3^1989.13
E=13(1+3^3+...+3^1989) chia hết cho 13
còn chung minh chia hết cho 41 thì mik không biết

A= 1 + 3 + 3^2 + 3^3 + 3^4 + ....+ 3^1991
A= (1 + 3 + 3^2) +( 3^3 + 3^4+3^5) + ....+(3^1989+3^1999+3^1991)
A= 13+3^3(1+3+3^2)+....+3^1989(1+3+3^2) chia hết cho 13
Còn 41 thì gộp 4 số rùi làm tương tự

A = 3 + 33 + 35 + ... + 31991
= ( 3 + 33 + 35 ) + ( 37 + 39 + 311 ) + ... + ( 31987 + 31989 + 31991 )
= 3(1+32+34) + 37(1+32+34) + ... + 31987(1+32+34)
= 3.91 + 37.91 + ... + 31987.91
= 91.(3+37+...+31987) chia hết cho 91
Mà 91 = 13.7 nên A cũng chia hết cho 13

A = 2 + 22 + ... + 260 chia hết cho 3
=> ( 2 + 22 ) + ( 23 + 24 ) + .... + ( 259 + 260 )
=> 2( 1 + 2 ) + 23( 1 + 2 ) + .... + 259( 1 + 2 )
=> 2 . 3 + 23 . 3 + .... + 259 . 3
=> 3( 2 + ..... + 259 )
=> chia hết cho 3
Những câu khác bạn làm tương tự nhé , tùy vào từng câu mà gộp nhiều hay ít thôi
GOODLUCK !
B=1+3+\(3^{2}\)+\(3^{3}\)+....+\(3^{1991}\)
B=1+3+\(3^{2}\)+\(3^{3}\)+....+\(3^{1991}\)
=(1+3+\(3^{2}\)+\(3^{3}\))+(\(3^{4}\)+\(3^{5}\)+\(3^{6}\)+\(3^{7}\))+.....+(\(3^{1988}\)+\(3^{1989}\)+\(3^{1990}\)+\(3^{1991}\))
=(1+\(3^{4}\))(1+3+\(3^{2}\)+\(3^{3}\))(\(3^{8}\)+....+\(3^{1988}\))
=82.(1+3+\(3^{2}\)+\(3^{3}\))(\(3^{8}\)+....+\(3^{1988}\))
Vì 82⋮41
→E⋮41
→B⋮41(đpcm)