Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{4^2}\) + \(\dfrac{1}{6^2}\) + .....+ \(\dfrac{1}{1002^2}\)
A = \(\dfrac{1}{2^2.1^2}\) + \(\dfrac{1}{2^2.2^2}\) + \(\dfrac{1}{2^2.3^2}\)+......+\(\dfrac{1}{2^2.501^2}\)
A = \(\dfrac{1}{2^2}\) \(\times\)( \(1\) + \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\)+.......+ \(\dfrac{1}{501^2}\))
ta có : \(\dfrac{1}{2^2}\) < \(\dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}\) < \(\dfrac{1}{2.3}\)
................
\(\dfrac{1}{501^2}\) < \(\dfrac{1}{500.501}\)
Cộng vế với vế ta được
\(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) +.....+ \(\dfrac{1}{501^2}\) < \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+.......+\dfrac{1}{500.501}\)
\(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) +.....+ \(\dfrac{1}{501^2}\) < \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\) + \(\dfrac{1}{2}-\dfrac{1}{3}\)+.....+ \(\dfrac{1}{500}-\dfrac{1}{501}\)
\(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\)+......+ \(\dfrac{1}{501^2}\) < 1 - \(\dfrac{1}{501}\) < 1
=>A = \(\dfrac{1}{4}\) \(\times\) ( 1 + \(\dfrac{1}{2^2}\)+ \(\dfrac{1}{3^2}\)+.....+\(\dfrac{1}{501^2}\)) < \(\dfrac{1}{4}\) \(\times\)(1 + 1)
A < \(\dfrac{1}{4}\) \(\times\) 2
A < \(\dfrac{1}{2}\)
a, Ta có :
\(M=\dfrac{1}{1\cdot2}+\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{1\cdot2\cdot3\cdot4}+...+\dfrac{1}{1\cdot2\cdot3\cdot...\cdot100}\\ < \dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-...+\dfrac{1}{99}-\dfrac{1}{100}\\ =1-\dfrac{1}{100}=\dfrac{99}{100}< 1\\ \Rightarrow M< 1\\ \RightarrowĐpcm\)
a) Đặt :
\(A=\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+.................+\dfrac{1}{100!}\)
Ta thấy :
\(\dfrac{1}{2!}=\dfrac{1}{1.2}\)
\(\dfrac{1}{3!}=\dfrac{1}{1.2.3}\)
\(\dfrac{1}{4!}=\dfrac{1}{1.2.3.4}< \dfrac{1}{3.4}\)
.....................................
\(\dfrac{1}{100!}=\dfrac{1}{1.2.3..........100}< \dfrac{1}{99.100}\)
\(\Rightarrow A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...........+\dfrac{1}{99.100}\)
\(A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...........+\dfrac{1}{99}-\dfrac{1}{100}\)
\(A< 1-\dfrac{1}{100}\)
\(A< \dfrac{99}{100}< 1\)
\(\Rightarrow A< 1\rightarrowđpcm\)
b) Đặt :
\(B=\dfrac{9}{10!}+\dfrac{9}{11!}+\dfrac{9}{12!}+.............+\dfrac{9}{1000!}\)
Ta thấy :
\(\dfrac{9}{10!}=\dfrac{10-1}{10!}=\dfrac{1}{9!}-\dfrac{1}{10!}\)
\(\dfrac{9}{11!}< \dfrac{11-1}{11!}=\dfrac{1}{10!}-\dfrac{1}{11!}\)
...................................................
\(\dfrac{9}{1000!}< \dfrac{1000-1}{1000!}=\dfrac{1}{999!}-\dfrac{1}{1000!}\)
\(\Rightarrow B< \dfrac{1}{9!}-\dfrac{1}{10!}+\dfrac{1}{10!}-\dfrac{1}{11!}+............+\dfrac{1}{999!}-\dfrac{1}{1000!}\)
\(B< \dfrac{1}{9!}-\dfrac{1}{1000!}\)
\(\Rightarrow B< \dfrac{1}{9!}\rightarrowđpcm\)
~ Chúc bn học tốt ~
Ta có:
\(\dfrac{9}{n!}\)< \(\dfrac{n-1}{n!}\) = \(\dfrac{1}{(n-1)!} - \dfrac{1}{n!}\) với n > 10 (n thuộc Z)
\(\Rightarrow\) \(\dfrac{9}{10!} + \dfrac{9}{11!} + \dfrac{9}{12!} + ... +\dfrac{9}{1000!} \)
= \(\dfrac{1}{9!} - \dfrac{1}{10!} + \dfrac{9}{11!} + \dfrac{9}{12!} + ... +\dfrac{9}{1000!}\)
\(\Rightarrow\) \(\dfrac{1}{9!} - \dfrac{1}{10!} + \dfrac{1}{10!} - \dfrac{1}{11!} + \dfrac{1}{11!} - \dfrac{1}{12!} + ....\)
= \(\dfrac{1}{9!} - \dfrac{1}{1000!}\)
\(\Rightarrow \) \(\dfrac{9}{10!} + \dfrac{9}{11!} + ...+ \dfrac{9}{1000!} < \dfrac{1}{9!}\)
Chúc bn hc tốt.
bạn ơi cái câu <1 số hạng cuối cùng là j thế?
1/4^2 + 1/5^2 +... + 1/100^2 < 1/3.4 + 1/4.5 +...+ 1/99.100
A=1/3 - 1/4 + 1/4 - 1/5 +...+ 1/99 - 1/100
=1/3 - 1/100 < 1/3
\(M=\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}+...+\dfrac{1}{105}+\dfrac{1}{120}\)
\(M=2.\left(\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+...+\dfrac{1}{240}\right)\)
\(M=2.\left(\dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{15.16}\right)\)
\(M=2.\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{15}-\dfrac{1}{16}\right)\)
\(M=2.\left(\dfrac{1}{4}-\dfrac{1}{16}\right)\)
\(M=2.\dfrac{3}{16}\)
\(M=\dfrac{3}{8}\)
Vậy \(\dfrac{1}{3}< M< \dfrac{1}{2}\)
ủa bạn ơi, lớn hơn 1/2 hay bé hơn 1/2 vậy bạn