Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{1}{5}+\frac{1}{14}+\frac{1}{31}+\frac{1}{44}+\frac{1}{61}+\frac{1}{84}+\frac{1}{96}.\)
\(=\frac{1}{5}+\left(\frac{1}{14}+\frac{1}{31}+\frac{1}{44}\right)+\left(\frac{1}{61}+\frac{1}{84}+\frac{1}{96}\right)\)
Ta thấy \(\frac{1}{14}< \frac{1}{12}\)
\(\frac{1}{31}< \frac{1}{12}\)
\(\frac{1}{44}< \frac{1}{12}\)
\(=>\frac{1}{14}+\frac{1}{31}+\frac{1}{44}< \frac{1}{12}+\frac{1}{12}+\frac{1}{12}\)
\(=>\frac{1}{14}+\frac{1}{31}+\frac{1}{44}< \frac{1}{12}.3\left(1\right)\)
Ta lại thấy \(\frac{1}{61}< \frac{1}{60}\)
\(\frac{1}{84}< \frac{1}{60}\)
\(\frac{1}{96}< \frac{1}{60}\)
\(=>\frac{1}{61}+\frac{1}{84}+\frac{1}{96}< \frac{1}{60}+\frac{1}{60}+\frac{1}{60}\)
\(=>\frac{1}{61}+\frac{1}{84}+\frac{1}{96}< \frac{1}{60}.3\left(2\right)\)
Từ (1) và (2) suy ra: \(\frac{1}{5}+\frac{1}{14}+\frac{1}{31}+\frac{1}{44}+\frac{1}{61}+\frac{1}{84}+\frac{1}{96}< \frac{1}{5}+\frac{1}{12}.3+\frac{1}{60}.3\)
\(=>\frac{1}{5}+\frac{1}{14}+\frac{1}{31}+\frac{1}{44}+\frac{1}{61}+\frac{1}{84}+\frac{1}{96}< \frac{1}{5}+3.\left(\frac{1}{12}+\frac{1}{60}\right)\)
\(=>\frac{1}{5}+\frac{1}{14}+\frac{1}{31}+\frac{1}{44}+\frac{1}{61}+\frac{1}{84}+\frac{1}{96}< \frac{1}{2}\)
\(=>Đpcm\)
3/10=3/9*10
3/11=3/10*11
3/12=3/11*12
3/13=3/12*13
3/14=3/13*14
suy ra 3/10+3/3/11+....+3/14 nhỏ hơn 3/9*10+....+3/13*14
suy ra 3/9*10 + 3/10*11+....+3/13*14
=1/9-1/10+....+1/13-1/14
=1/9-1/14
tự viết kết quả nhé
mỗi p/số của A đều bé hơn 1/1.2+1/2.3+1/3.4+......+1/49.50
A<1-1/2+1/2-1/3+1/3-1/4+..........+1/49-1/50(tách ra thành hiệu)
A<1-1/50
mà 1/50>0=>1-1/50<1<2
A<1-1/50<1<2
A<2
chúc học tốt
\(A<\frac{1}{1\cdot2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49\cdot50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}<1<2\)
Ta có:\(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+..........+\frac{1}{64}\)
=\(1+\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)+.........+\left(\frac{1}{33}+......+\frac{1}{64}\right)\)
\(>1+\frac{1}{2}+\left(\frac{1}{4}+\frac{1}{4}\right)+\left(\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}\right)+...+\left(\frac{1}{64}+\frac{1}{64}+.........+\frac{1}{64}\right)\)
=\(1+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}\)
=4
Vậy \(1+\frac{1}{2}+\frac{1}{3}+.........+\frac{1}{64}>4\)
1-1/2+1/3-1/4+...+1/199-1/200=(1+1/2+1/3+1/4+...+199+1/200)-(1+1/2+1/3+...+1/100)=1+1/2+1/3+1/4+...+1/199+1/200-1-1/2-1/3-1/4-...-1/99-1/100=(1+1/2+1/3+...+1/100)-(1+1/2+1/3+...+1/100)+(1/101+1/102+...+1/200)=0+(1/101+1/102+...+1/200)=(1/101+1/102+...+1/200)(đpcm)
A = 1/10 + 1/12 + 1/14 + ... + 1/20 > 1/2
= 1/2.5 + 1/2.6 + 1/2.7 + ... + 1/2.10 > 1/2
= 1/2 . 1/5 + 1/2 . 1/6 + 1/2 . 1/7 + ... + 1/2 . 1/10 > 1/2
= 1/2 . ( 1/5 + 1/6 + 1/7 + ... + 1/10 ) > 1/2 => (đpcm)