Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(A=\dfrac{1}{10}+\dfrac{1}{12}+\dfrac{1}{14}+...+\dfrac{1}{20}< \dfrac{1}{12}+\dfrac{1}{12}+...+\dfrac{1}{12}\left(6PS\right)\)
Mà\(\dfrac{1}{12}+\dfrac{1}{12}+...+\dfrac{1}{12}=6.\dfrac{1}{12}=\dfrac{1}{2}\)
\(\Rightarrow A< \dfrac{1}{2}\)
\(\dfrac{1}{10}+\dfrac{1}{12}+\dfrac{1}{13}+\dfrac{1}{14}+...+\dfrac{1}{20}< \dfrac{1}{2}\\ \dfrac{1}{10}>\dfrac{1}{12}\\ \dfrac{1}{12}=\dfrac{1}{12}\\ ...\\ \dfrac{1}{20}< \dfrac{1}{12}\)
⇒Cộng 2 vế, ta có:
\(\dfrac{1}{10}+\dfrac{1}{12}+\dfrac{1}{14}+...+\dfrac{1}{20}< \dfrac{6}{12}=\dfrac{1}{2}\)
Vậy A<\(\dfrac{1}{2}\)
— S = 1/4 + 2/4 +...+10/4 (1)
= 1 + 1/4 + 2/4 +...+ 9/4 (2)
=> Lấy (2) trừ đi (1) ta được:
1 — 10/4 = —6/4
Vì 14 = 14/1 = 84/6 mà —6/4 < 84/6
Do đó S < 14
Đặt \(A=\dfrac{1}{41}+\dfrac{1}{42}+\dfrac{1}{43}+\dfrac{1}{44}+...+\dfrac{1}{80}\)
\(=\left(\dfrac{1}{41}+\dfrac{1}{42}+...+\dfrac{1}{60}\right)+\) \(\left(\dfrac{1}{61}+\dfrac{1}{62}+...+\dfrac{1}{80}\right)\)
Nhận xét:
\(\dfrac{1}{41}+\dfrac{1}{42}+...+\dfrac{1}{60}>\dfrac{1}{60}+\dfrac{1}{60}+...+\dfrac{1}{60}\) \(=\dfrac{1}{3}\)
\(\dfrac{1}{61}+\dfrac{1}{62}+...+\dfrac{1}{80}>\dfrac{1}{80}+\dfrac{1}{80}+...+\dfrac{1}{80}\) \(=\dfrac{1}{4}\)
\(\Rightarrow A>\dfrac{1}{3}+\dfrac{1}{4}=\dfrac{7}{12}>\dfrac{1}{12}\)
Vậy \(\dfrac{1}{41}+\dfrac{1}{42}+\dfrac{1}{43}+...+\dfrac{1}{80}>\dfrac{1}{12}\) (Đpcm)
\(=\left(\dfrac{1}{10}+\dfrac{-1}{10}\right)+\left(-\dfrac{1}{11}+\dfrac{1}{11}\right)+\left(-\dfrac{1}{12}+\dfrac{1}{12}\right)+\left(-\dfrac{1}{13}+\dfrac{1}{13}\right)+\left(-\dfrac{1}{14}+\dfrac{1}{14}\right)+\left(-\dfrac{1}{15}+\dfrac{1}{15}\right)+\dfrac{1}{16}\\ =\dfrac{1}{16}\)
Tính nhanh :
\(\dfrac{1}{10}+\dfrac{-1}{11}+\dfrac{1}{12}+\dfrac{-1}{13}+\dfrac{1}{14}+\dfrac{-1}{15}+\dfrac{1}{16}+\dfrac{-1}{10}+\dfrac{1}{11}+\dfrac{-1}{12}+\dfrac{1}{13}+\dfrac{-1}{14}+\dfrac{1}{15}\)
\(=\left(\dfrac{1}{10}+\dfrac{-1}{10}\right)+\left(\dfrac{-1}{11}+\dfrac{1}{11}\right)+\left(\dfrac{1}{12}+\dfrac{-1}{12}\right)+\left(\dfrac{-1}{13}+\dfrac{1}{13}\right)+\left(\dfrac{1}{14}+\dfrac{-1}{14}\right)\)
\(+\left(\dfrac{-1}{15}+\dfrac{1}{15}\right)+\dfrac{1}{16}\)
\(=0+0+...+0+\dfrac{1}{16}\)
\(=\dfrac{1}{16}\)
c) E = \(\dfrac{4116-14}{10290-35}\) và K = \(\dfrac{2929-101}{2.1919+404}\)
E = \(\dfrac{4116-14}{10290-35}\)
E = \(\dfrac{14.\left(294-1\right)}{35.\left(294-1\right)}\)
E = \(\dfrac{14}{35}\)
K = \(\dfrac{2929-101}{2.1919+404}\)
K = \(\dfrac{101.\left(29-1\right)}{101.\left(38+4\right)}\)
K = \(\dfrac{29-1}{34+8}\)
K = \(\dfrac{28}{42}\) = \(\dfrac{2}{3}\)
Ta có : E = \(\dfrac{14}{35}\) và K = \(\dfrac{2}{3}\)
\(\dfrac{14}{35}\) = \(\dfrac{42}{105}\)
\(\dfrac{2}{3}\) = \(\dfrac{70}{105}\)
Vậy E < K
Các câu còn lại tương tự
a, Ta có :
\(\dfrac{1}{6}< \dfrac{1}{5}\)
\(\dfrac{1}{7}< \dfrac{1}{5}\)
.................
\(\dfrac{1}{9}< \dfrac{1}{5}\)
\(\dfrac{1}{10}=\dfrac{1}{10}\)
\(\dfrac{1}{11}< \dfrac{1}{10}\)
..................
\(\dfrac{1}{17}< \dfrac{1}{10}\)
\(\Leftrightarrow\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+......+\dfrac{1}{17}< \dfrac{1}{5}+\dfrac{1}{5}+....+\dfrac{1}{5}\)
\(\Leftrightarrow A< \dfrac{1}{5}.5+\dfrac{1}{10}.8\)
\(\Leftrightarrow A< 1+\dfrac{4}{5}=\dfrac{9}{5}< 2\)
\(\Leftrightarrow A< 2\left(đpcm\right)\)
b/ Ta có :
\(\dfrac{1}{11}>\dfrac{1}{30}\)
\(\dfrac{1}{12}>\dfrac{1}{30}\)
...............
\(\dfrac{1}{29}>\dfrac{1}{30}\)
\(\dfrac{1}{30}=\dfrac{1}{30}\)
\(\Leftrightarrow\dfrac{1}{11}+\dfrac{1}{12}+........+\dfrac{1}{30}>\dfrac{1}{30}+\dfrac{1}{30}+.......+\dfrac{1}{30}\)
\(\Leftrightarrow B>\dfrac{1}{30}.20=\dfrac{2}{3}\)
\(\Leftrightarrow B>\dfrac{2}{3}\left(đpcm\right)\)
1. Tính nhanh:
\(\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}\)
\(=\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}\)
\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}\)
\(=\dfrac{1}{2}-\dfrac{1}{8}\)
\(=\dfrac{3}{8}\)
2. Tính nhanh
Đặt \(A\) = \(\dfrac{1}{15}+\dfrac{1}{35}+\dfrac{1}{63}+\dfrac{1}{99}+\dfrac{1}{143}\)
\(A\) \(=\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+\dfrac{1}{9.11}+\dfrac{1}{11.13}\)
\(2A=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{13}\)
\(2A=\dfrac{1}{3}-\dfrac{1}{13}\)
\(2A=\dfrac{10}{39}\)
\(A=\dfrac{10}{39}:2\)
\(A=\dfrac{5}{39}\)
Ta có : \(B=\dfrac{1}{12}>\dfrac{1}{22};\dfrac{1}{13}>\dfrac{1}{22};....;\dfrac{1}{21}>\dfrac{1}{22}\)
Vậy : \(B=\dfrac{1}{12}+\dfrac{1}{13}+...+\dfrac{1}{22}>\dfrac{1}{22}+\dfrac{1}{22}+\dfrac{1}{22}+...+\dfrac{1}{22}=\dfrac{11}{22}=\dfrac{1}{2}\)
( Có 11 số hạng \(\dfrac{1}{2}\))
Hay B \(>\dfrac{1}{2}\)
Ta có : A = 1/10 + 1/12 + 1/14 + ... + 1/20 > 1/20 + 1/20 + ... + 1/20 . ( 10 số hạng ) = 1/20 * 10 . = 1/2 . Do đó A > 1/2 . Vậy bài toán được chứng minh .
Bạn đếm lại dãy số xem có bao nhiêu phân số tất cả