Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhóm 2 số 1 cặp
M= 1.(1+3) + 3^2.(1+3) + .... + 3^118.(1+3)
M= 1. 4 + 3^2.4+... + 3^118 . 4
M = 4.(1+3^2+...+ 3^118) chia hết cho 4
Vậy M chia hết cho 4
Nhóm 3 số 1 cặp
M= 1.(1+3+3^2) + 3^3.(1+3+3^2) + .... + 3^117.(1+3+3^2)
M= 1.13+ 3^3.13+... + 3^117 . 13
M = 13 . (1+3^3+...+3^117) chia hết cho 13
Vậy M chia hết cho 13
Nhớ k cho mình nếu bạn thấy đúng nhé!
M=1+3+32+33+...+3118+3119
=(1+3+32)+(33+34+35)+...+(3117+3118+3119)
=(1+3+32)+(33.1+33.3+33.32)+...+(3117.1+3117.3+3117.32)
=(1+3+32)+33.(1+3+32)+...+3117.(1+3+32)
=13+33.13+...+3117.13
=13.1+33.13+...+3117.13
=13.(1+33+3117)
=> M chia hết cho 13
Đối với 4 cũng tương tự
M=1+3+32+33+...+3118+3119
=(1+3+32)+(33+34+35)+...+(3117+3118+3119)
=(1+3+32)+(33.1+33.3+33.32)+...+(3117.1+3117.3+3117.32)
=(1+3+32)+33.(1+3+32)+...+3117.(1+3+32)
=13+33.13+...+3117.13
=13.1+33.13+...+3117.13
=13.(1+33+3117)
=> M chia hết cho 13 .
Em copy của triều đặng
I = 1 + 3 + 32 + 33 + ... + 3119
=(1+3+32)+(33+34+35)+....+(3117+3118+3119)
=(1+3+32)+(1.33+3.33+32.33)+...(1.3117+3.3117+32.3117)
=13+33.(1+3+32)+...+3117.(1+3+32)
=13.1+33.13+...+3117.13
=13.(1+33+...+3117)
=> I chia hết cho 13
mấy câu kia tương tự
Ta co: B= 1 + 3 +32 + 33 + ....... + 399
= (1 + 3) + 32(1+3) + 34(1 + 3) + ......... + 398(1+3)
= (1 + 3)(1 + 32 +34 + ......... + 398)
= 4(1 + 32 +34 + ........... + 398) \(⋮\)4
Vay B \(⋮\)4
k cho mk nha
B=(1+3)+(32+33)+...+(398+399)
=(1+3)+32(1+3)+...+398(1+3)
=4+32.4+.....+398.4
=4.(1+32+...+398)
vì 4 chia hết cho 4 => 4.(1+32+...+398) chia hết cho 4 => B chia hết cho 4 (điều phải chứng minh)
\(C=1+3+3^2+.....+3^{11}.\)
\(\Rightarrow C=\left(1+3+3^2\right)+.....+\left(3^9+3^{10}+3^{11}\right)\)
\(\Rightarrow C=13+3^3.13+....+3^9.13\)
\(\Rightarrow C=13.\left(1+3^3+....+3^9\right)\)
Vì \(13⋮13\)
Do đó : \(C⋮13\)
\(C=1+3+3^2+.....+3^{11}\)
\(\Rightarrow C=\left(1+3+3^2+3^3\right)+....+\left(3^8+3^9+3^{10}+3^{11}\right)\)
\(\Rightarrow C=40+40.3^4+3^8.40\)
\(\Rightarrow C=40.\left(1+3^4+3^8\right)\)
Vì \(40⋮40\)
Do đó \(C⋮40\)(đpcm)
a,C1+3+32)+.....+39,(1+3+32)
C=13+.....+39.13
C=13(1+.....+39) chia hết cho 13
Vậy C chia hết cho 13
b,C=(1+3+32+33)+.....+38(1+3+32+33)
C=40+.....+38+40
C=40(1+.....+38.40
C=40(1+.....+38 chia hết cho 40
Vậy C chia hết cho 40
a) A = 1 + 3 + 32 + .... + 311
= (1+3+32 ) + ( 33 + 34 + 35) + ..... + (39 + 310 + 311)
= 13 + 33 . 13 + .... + 39 . 13
= 13 . (1+ 33 +....+ 39)
=> A chia hết cho 13
b) B = 165 + 215
= 220 +215
= 215 . 25 + 215
= 215 . ( 25 + 1)
= 215 .33
=> B chia hết cho 33
c) C= 5 + 52 + 53 + .....+ 58
= (5 + 52) + (53 + 54) +....+ ( 57 + 58)
= 30 + 52 (5 + 52) + ....+ 56 ( 5 + 52)
= 30 + 52 . 30 + .....+ 56 . 30
= 30. ( 1+ 52 +....+ 56 )
=> C chia hết cho 30
d) D= 45 + 99+ 180 chia hết cho 9
Do 45 chia hết cho 9
99 chia hết cho 9
180 chia hết cho 9
=> 45 + 99 + 180 chia hết cho 9
e) E = 1+ 3 + 32 + 33 + ......+ 3199
= (1+3+32) + (33 + 34 + 35) +......+ (3197 + 3198 + 3199)
= 13 + 33 (1+3+32) +.......+ 3197(1+3+32)
= 13 + 33 . 13 + ..... + 3197 .13
= 13. ( 1+ 33 +....+ 3197)
=> E chia hết cho 13
f)
Ta có: 1028 + 8 = 100...08 (27 chữ số 0)
Xét 008 chia hết cho 8 => 1028 + 8 chia hết cho 8 (1)
Mà 1+27.0+ 8 = 9 chia hết cho 9 => 1028 + 8 chia hết cho 9 (2)
Mà (8,9) =1 (3)
Từ (1); (2); (3) => 1028 + 8 chia hết cho (8.9)= 72
g)
ta có: G= 88 + 220 = (23)8 + 220 = 224 + 220 = 220 . 24 + 220 = 220 . (24 + 1) = 220 . 17
=> G chia hết cho 17
a) A = 1 + 3 + 3^2 + ... + 3^11
A = ( 1 + 3 + 3^2 ) + ... + ( 3^9 + 3^10 + 3^11 )
A = 1(1 + 3 + 3^2 ) + ... + 3^9 ( 1 + 3 + 3^2 )
A = 1 . 13 + ... + 3^9 . 13
A = 13 ( 1 + ... + 3^9 ) chia hết cho 13
còn mấy ý kia bạn chỉ cần tách nhóm rồi làm tương tự là ok
Good luck
a, mình nghĩ là \(16^5+2^{15}\)
ta có : \(16^5=2^{20}\)
=>\(16^5+2^{15}=2^{20}+2^{15}\)
=\(2^{15}.2^5+2^{15}\)
\(=2^{15}.\left(2^5+1\right)\)
\(=2^{15}.33\)
mà \(2^{15}.33⋮33\)
\(=>16^5+2^{15}⋮33\)
a)Ta thấy: 16^5=2^20
=> A=16^5 + 2^15
= 2^20 + 2^15
= 2^15.2^5 + 2^15
= 2^15(2^5+1)
=2^15.33
số này luôn chia hết cho 33
b)