Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh 1/41 + 1/42 + 1/43 + ... + 1/79 + 1/80 > 7/12
Ta có:
7/12 = 4/12 + 3/12 = 1/3 + 1/4 = 20/60 + 20/80
1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 = (1/41 + 1/42 + 1/43 + ...+ 1/60) + (1/61 + 1/62 +...+ 1/79 + 1/80)
Do 1/41> 1/42 > 1/43 > ...>1/59 > 1/60
=> (1/41 + 1/42 + 1/43 + ...+ 1/60) > 1/60 + ...+ 1/60 = 20/60
và 1/61> 1/62> ... >1/79> 1/80
=> (1/61 + 1/62 +...+ 1/79 + 1/80) > 1/80 + ...+ 1/80 = 20/80
Vậy: 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 > 20/60 + 20/80 = 7/12
=> 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 > 7/12
=> ĐPCM
Đặt \(A=\dfrac{1}{41}+\dfrac{1}{42}+\dfrac{1}{43}+...+\dfrac{1}{80}\)
\(=\left(\dfrac{1}{41}+\dfrac{1}{42}+\dfrac{1}{43}+...+\dfrac{1}{60}\right)+\left(\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}+...+\dfrac{1}{80}\right)\)
Mặt khác:
\(\dfrac{7}{12}=\dfrac{20}{60}+\dfrac{20}{80}\)
mà \(\left\{{}\begin{matrix}\dfrac{20}{60}< \left(\dfrac{1}{41}+\dfrac{1}{42}+\dfrac{1}{43}+...+\dfrac{1}{60}\right)\\\dfrac{20}{80}< \left(\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}+...+\dfrac{1}{80}\right)\end{matrix}\right.\)
⇒ \(\dfrac{7}{12}< A\) (1)
Ta có:
\(\dfrac{5}{6}=\dfrac{20}{40}+\dfrac{20}{60}\)
mà \(\left\{{}\begin{matrix}\dfrac{20}{40}>\left(\dfrac{1}{41}+\dfrac{1}{42}+\dfrac{1}{43}+...+\dfrac{1}{60}\right)\\\dfrac{20}{60}>\left(\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}+...+\dfrac{1}{80}\right)\end{matrix}\right.\)
⇒ \(A< \dfrac{5}{6}< 1\)(2)
Từ (1) và (2)
⇒ \(\dfrac{7}{12}< A< 1\) (đpcm)
a)ta có: A=1/11+1/12+1/13+...+1/20
A>9.1/20
A)>9/20
Ta có 1/2=10/20
Vì 9/20<10/20=> A<1/2
Phần B cũng vậy
vi A=1/11+1/12+...+120>1/20.10
A=1/11+1/12+...+1/120>1/2
=>A>1/2
câu b làm như trên nhé