K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2019

a) \(7^6+7^5-7^4=7^4\left(7^2+7-1\right)=7^4.55⋮55\)

21 tháng 7 2019

d) \(81^7-27^9-9^{13}\)

\(=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}\)

\(=3^{28}-3^{27}-3^{26}\)

\(=3^{26}\left(3^2-3-1\right)=3^{226}.5=3^{222}.405⋮405\)

20 tháng 7 2023

Bài 2:

\(\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\)

\(\Rightarrow\dfrac{a+b}{c+a}=\dfrac{a-b}{c-a}=\dfrac{a+b+a-b}{c+a+c-a}=\dfrac{a}{c}\) (T/c dãy tỷ số = nhau)

\(\Rightarrow\dfrac{a+b}{c+a}=\dfrac{a}{c}\Rightarrow c\left(a+b\right)=a\left(c+a\right)\)

\(\Rightarrow ac+bc=ac+a^2\Rightarrow a^2=bc\)

23 tháng 7 2018

\(B1\)

\(\frac{3}{4}^{-2}=\frac{16}{9}\)

B 3

\(A=2^{13}\times3^{19}\)

29 tháng 8 2017

a) ta có : \(5^5-5^4+5^3=5^3.\left(5^2-5+1\right)=5^3.\left(25-5+1\right)\)

\(5^3.21=5^3.3.7⋮7\) (đpcm)

b) ta có : \(7^6+7^5-7^4=7^4.\left(7^2+7-1\right)=7^4.\left(49+7-1\right)\)

\(=7^4.55=7^4.5.11⋮11\) (đpcm)

c) ta có : \(3^{x+2}-2^{x+3}+3^x-2^{x+1}=3^{x+2}+3^x-2^{x+3}-2^{x+1}\)

\(=3^x\left(3^2+1\right)-2^x\left(2^3+2\right)=3^x.\left(9+1\right)-2^x.\left(8+2\right)\)

\(=3^x.10-2^x.10=10\left(3^x-2^x\right)⋮10\) (đpcm)

d) \(3^{x+3}+3^{x+1}+2^{x+3}+2^{x+2}=3^x.\left(3^3+3\right)+2^x.\left(2^3+2^2\right)\)

\(=3^x.\left(27+3\right)+2^x\left(8+4\right)=3^x.30+2^x.12=6.\left(3^x.5+2^x.2\right)⋮6\) (đpcm)

29 tháng 8 2017

a)Ta có:\(5^5-5^4+5^3=5^3\left(5^2-5+1\right)=5^3.21\)(vì 21 chia hết cho 7)

\(\)\(\RightarrowĐPCM\)

b)Ta có: \(7^6+7^5-7^4⋮11=7^4\left(7^2+7-1\right)=7^4.55⋮11\)

\(\Rightarrowđpcm\)

28 tháng 8 2017

Ta có \(5^5-5^4+5^3=5^3\left(5^2-5+1\right)=5^3.21=5^3.3.7\)

Vì 53.3 là số nguyên nên \(5^3.3.7⋮7\)

Vậy  \(5^5-5^4+5^3⋮7\)

28 tháng 8 2017

c) \(3^{x+3}+3^{x+1}+2^{x+3}+2^{x+2}\)

\(=\left(3^{x+3}+3^{x+1}\right)+\left(2^{x+3}+2^{x+2}\right)\)

\(=3^x\left(3^2+3\right)+2^x\left(2^2+2\right)\)

\(=3^x.12+2^x.6\)

\(=6\left(2.3^x+2^x\right)\)

Vì \(2.3^x+2^x\in Z\)

Nên : \(6\left(2.3^x+2^x\right)⋮6\)

Vậy \(3^{x+3}+3^{x+1}+2^{x+3}+2^{x+2}⋮6\)