K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2015

a) 4n+6 là số chẵn => tích trên chẵn 

b) Giả sử : n là số chẵn => 8n+1 và 6n+5 đều là số lẻ => tích ko chia hết cho 2

Giả sử n là số lẻ =>8n+1 và 6n+5 đều là số lẻ => tích ko chia hết cho 2

Vậy biểu thức trên ko chia hết cho 2 với mọi n

8 tháng 8 2018

a)4n+6 chia hết cho 2 với mọi n nên ta có đpcm

b)Cả 2 thừa số dều lẻ với mọi n nên ta có đpcm

8 tháng 8 2018

a) Ta có: 4n+6 có chữ số tận cùng là số chẵn

=> (4n+6).(5n+7) cũng có chữ số tận cùng là số chẵn

Mà các số có chữ số chẵn tận cùng đều chia hết cho 2

Vậy (5n+7).(4n+6) chia hết cho 2

b) Ta thấy: 8n+1 có chữ số tận cùng là một số lẻ

                 6n+5 có chữ số tận cùng cũng là một số lẻ

=> (8n+1).(6n+5) có chữ số tận cùng là một số lẻ

=> (8n+1).(6n+5) không chia hết cho 2

19 tháng 7 2015

a)(5n+7)(4n+6)

nếu n=2k =>(5.2k+7)(4.2k+6)=(10k+7)(8k+6)

Vì 8k+6 chia hết cho 2 nên (10k+7)(8k+6) chia hết cho 2   (1)

nếu n=2k+1 =>[5.(2k+1)+7].[4.(2k+1)+6]=(10k+5+7).(8k+4+6)=(10k+12).(8k+10) chia hết cho 2    (2)

Từ (1)  (2) =>(5n+7).(4n+6) luôn chia hết cho 2

=>đpcm

18 tháng 11 2015

a) n+2 \(\in\)B(3)={0;3;6;9;12;15;18;21;...}

\(\Rightarrow\)n=1;4;7;10;13;16;19;....

b) 4n-5 \(\in\)B(13)={0;13;26;39;42;.....}

\(\Rightarrow\)n=5;18;31;44;47;...

c) 5n-1 \(\in\)B(7)={0;7;14;21;28;35;42;...}

\(\Rightarrow\)n=3

d) 25n+3 \(\in\)B(57)={0;57;114;171;228;285...}

\(\Rightarrow\)n=9

22 tháng 10 2015

Ta có: 24n+2+1=(24)n.22+1=(24)n.4+1

Ta thấy: 24=16 đồng dư với 1(mod 5)

=>(24)n đồng dư với 1n(mod 5)

=>24n đồng dư với 1(mod 5)

=>24n.4 đồng dư với 1.4(mod 5)

=>24n+2 đồng dư với 4(mod 5)

=>24n+2+1 đồng dư với 4+1(mod 5)

=>24n+2+1 đồng dư với 5(mod 5)

=>24n+2+1 đồng dư với 0(mod 5)

=>24n+2+1 chia hết cho 5