\(a^2+b^2\ge2ab\)

Mình biết làm rồi chủ yếu cho các bạn kiếm điểm a...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2018

Ta có :

\(a^2+b^2\)\(=a^2-2ab+b^2+2ab\)

                   \(=\left(a-b\right)^2+2ab\ge2ab\)   

Mà CTV là j vậy.

18 tháng 6 2018

vào link 

https://olm.vn/tin-tuc/Giai-thuong-cong-tac-vien-hoc-ky-2-nam-hoc-2017---2018.html

sẽ hướng dẫn bn cách đăng kí làm cộng tác viên 

19 tháng 6 2016

Câu 1 : (Bạn thông cảm hơi mờ chút bucminh)

Hỏi đáp Toán

  \(=-301.\left[1+\left(-7\right)^4+\left(-7\right)^7+...+\left(-7\right)^{2005}\right]\)

  \(=43.\left(-7\right).\left[1+\left(-7\right)^4+\left(-7\right)^7+...+\left(-7\right)^{2005}\right]\) chia hết cho 43

19 tháng 6 2016

Câu 3 :

*Điều kiện đủ :

Nếu m và n chia hết cho 3 thì m2 ;n2 và mn chia hết cho 3 do đó m2 + mn + n2 chia hết cho 9

*Điều kiện cần :

Ta có :\(m^2+mn+n^2=\left(m-n\right)^2+3mn\) (*)

Nếu m2 + mn + n2 chia hết cho 9 thì từ (*) ta suy ra (m - n)2 chia hết cho 3 <=> (m - n) chia hết cho 3 (1)

Mà (m - n)2 chia hết cho 9 và 3mn chia hết cho 9  => mn chia hết cho 3 => m hoặc n chia hết cho 3 (2)

Từ (1) và (2) => cả 2 số m,n đều chia hết cho 3

3 tháng 1 2020

x O y A B C D E I

GỌI I LÀ GIAO ĐIỂM CỦA OE VÀ AC

D) XÉT \(\Delta COI\)\(\Delta AOI\)

\(CO=AO\left(GT\right)\)

\(\widehat{COE}=\widehat{IOA}\left(GT\right)\)

\(OI\)LÀ CẠNH CHUNG

\(\Rightarrow\Delta COI=\Delta AOI\left(C-G-C\right)\)

\(\Rightarrow\widehat{CIO}=\widehat{AIO}\)HAI GÓC TƯƠNG ỨNG

\(\widehat{OIC}+\widehat{OIA}=180^o\left(KB\right)\)

THAY\(\widehat{OIC}+\widehat{OIC}=180^o\)

\(2\widehat{OIC}=180^o\)

\(\widehat{OIC}=180^o:2=90^o\)

nên\(AC\perp OE\)TẠI I

E) CHỨNG MINH TƯƠNG TỰ CÂU D SAU ĐÓ => SO LE TRONG BẰNG NHAU=> //

3 tháng 1 2020

E) GỌI M LÀ GIAO ĐIỂM CỦA OE VÀDB

VÌ OE LÀ PHÂN GIÁC CỦA GÓC O MÀ OE CŨNG THUỘC GÓC DEB

=> OE CŨNG LÀ TIA PHÂN GIÁC CỦA DEB

XÉT \(\Delta DEM\)VÀ \(\Delta MEB\)

\(DE=EB\left(\Delta EAB=\Delta ECD\right)\)

\(\widehat{DEM}=\widehat{MEB}\left(CMT\right)\)

EM LÀ CẠNH CHUNG 

\(\Rightarrow\Delta DEM=\Delta MEB\left(C-G-C\right)\)

\(\Rightarrow\widehat{DME}=\widehat{EMB}\left(HCTU\right)\)

\(\widehat{DME}+\widehat{EMB}=180^o\left(kb\right)\)

THAY\(\widehat{DME}+\widehat{DME}=180^o\)

\(2\widehat{DME}=180^o\)

\(\widehat{DME}=180^o:2=90^O\)

\(\Rightarrow\widehat{OIA}=\widehat{DME}=90^O\)

HAI GÓC NÀY Ở VỊ TRÍ ĐỒNG VỊ BẰNG NHAU

\(\Rightarrow AC//BD\)

23 tháng 2 2016

a,

vì (a-b)2>=0(luon dung)

=>a2-2ab+b2>=0

=>a2+b2>=2ab

23 tháng 6 2020

A B D C H E K I

Trong tia đối của tia HB và ED lấy điểm K  và I sao cho : \(HK=EI\)

Theo tính chất cạnh đối diện với góc , chứng minh được \(KE< KC\)

Ta dễ dàng chứng minh được \(\Delta KHE=\Delta IEH\)(c-g-c)

Suy ra \(KE=IH\)\(< =>IH< KC\)

Đến đây mình chịu rồi 

23 tháng 6 2020

VÌ CẬU NÓI CÂU a) VÀ CÂU b) cậu làm đc r nên mk sẽ k giải phần đấy. Mk sẽ giải nguyên phần c) thôi 

Làm

Từ E kẻ EK vuông góc với BC tại K 

vì DH vuông góc với AC 

ED vuông góc AE hay ED vuông góc với AC=> BH // ED

=> góc HBE = BED ( so le trong ) (1)

mặt khác BD = DE theo câu a 

=> tam giác BDE cân tại D => góc EBD = BED (2)

Từ 1 , 2 suy ra góc HBE = EBK

Xét 2 TG vuông BHE và BKE có

HE là cạnh chung

góc HBE = EBK (theo cmt )

Do đó : tam giác BHE = BKE ( ch_gnh )

=> EH = EK

Trong tam giác EKC có EC là cạnh huyền 

=> EC > EK => EC > EH 

HỌC TỐT Ạ

3 tháng 12 2019

1) \(2^{x+2}-96=2^x\)\(\Leftrightarrow2^{x+2}-2^x=96\)\(\Leftrightarrow2^x\left(2^2-1\right)=96\)

\(\Leftrightarrow3.2^x=96\)\(\Leftrightarrow2^x=32=2^5\)\(\Leftrightarrow x=5\)

Vậy \(x=5\)

2) \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

\(\Rightarrow a=b\)\(b=c\)\(c=a\)\(\Rightarrow a=b=c\)

3 tháng 12 2019

Câu 1:

\(2^{x+2}-96=2^x\)

\(\Leftrightarrow2^{x+2}-2^x=96\)(chuyển vế nha bạn)

\(\Leftrightarrow2^x.\left(2^2-1\right)=96\)

\(\Leftrightarrow2^x.3=96\Rightarrow2^x=32=\left(+-6\right)^2\)

\(\Rightarrow x=2\)

Câu 2:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{a+b+c}=1\)

\(\Rightarrow a=b.1=b\)và \(b=c.1=c\)và \(c=a.1=a\)

\(\Rightarrow a=b=c\)

1) Tam giác ABC vuông tại A, có góc B bằng 60o. CM là tia phân giác góc ACB. Tính số đo góc AMC2) Cho \(\Delta ABC\)có AB<BC. Trên tia BA lấy điểm D sao cho BC=BD. Tia phân giác của góc B cắt cạnh AC ở E. Gọi K là trung điểm của DC.a) Chứng minh: ED=ECb) Chứng minh: \(EK\perp DC\)Các bạn chỉ cần làm b) của 2) thôi nhé! Khỏi cần vẽ hình cũng đc. Mình đã làm đc 1) và a) của 2) rồi nên bạn nào lười chỉ cần...
Đọc tiếp

1) Tam giác ABC vuông tại A, có góc B bằng 60o. CM là tia phân giác góc ACB. Tính số đo góc AMC

2) Cho \(\Delta ABC\)có AB<BC. Trên tia BA lấy điểm D sao cho BC=BD. Tia phân giác của góc B cắt cạnh AC ở E. Gọi K là trung điểm của DC.

a) Chứng minh: ED=EC

b) Chứng minh: \(EK\perp DC\)

Các bạn chỉ cần làm b) của 2) thôi nhé! Khỏi cần vẽ hình cũng đc. Mình đã làm đc 1) và a) của 2) rồi nên bạn nào lười chỉ cần làm phần b) giúp mình thôi nhé! Nếu có sai sót thì các bạn sửa giúp mình. Thanks! 

1) Xét \(\Delta ABC\)có:

\(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^o\)

\(90^o+60^o+\widehat{ACB}=180^o\)

\(150^o+\widehat{ACB}=180^o\)

\(\widehat{ACB}=180^o-150^o\)

Vậy \(\widehat{ACB}=30^o\)

Mà CM là tia phân giác góc \(\widehat{ACB}\)nên:

\(\widehat{ACM}=\widehat{MCB}=\frac{\widehat{ACB}}{2}=\frac{30^o}{2}=15^o\)

Vậy \(\widehat{ACM}=\widehat{MCB}=15^o\)

Xét \(\Delta AMC\)có:

\(\widehat{BAC}+\widehat{AMC}+\widehat{ACM}=180^o\)

\(90^o+\widehat{AMC}+15^o=180^o\)

\(105^o+\widehat{AMC}=180^o\)

\(\widehat{AMC}=180^o-105^o\)

Vậy \(\widehat{AMC}=75^o\)

2) a) Xét \(\Delta ADE\)và \(\Delta CKE\) có:

AE=CE (E là tia phân giác cạnh AC)

\(\widehat{DEA}=\widehat{KEC}\) (đối đỉnh)

\(\widehat{C}\): Cạnh chung

Vậy \(\Delta ADE=\Delta CKE\) (g-c-g)

Suy ra: ED=EC (hai cạnh tương ứng)

b) Chứng minh: \(EK\perp DC\)

1
17 tháng 12 2018

Xét tg BDK,có:

BD=BC(gt)

DE=CE(theo phần a)

DK=CK(gt)

=>B,E,K thẳng hàng

và BK là đưòng trung trực của tg BDK

mà \(K\in DC\)

=>BK \(\perp\)DC hay \(KE\perp DC\)

hay EK 

a: \(\widehat{ACB}=90^0-50^0=40^0\)

b: Xét tứ giác ABDC có

M là trung điểm của AD

M là trung điểm của BC

Do đó: ABDC là hình bình hành

Suy ra: DC=AB và DC//AB

c: Ta có: ΔABC vuông tại A

mà AM là đường trung tuyến

nên AM=BC/2

4 tháng 12 2019

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}\)

\(\Rightarrow\frac{2018a^2}{2018c^2}=\frac{2019b^2}{2019d^2}=\frac{2018a^2+2019b^2}{2018c^2+2019d^2}=\frac{2018a^2-2019b^2}{2018c^2-2019d^2}\)

\(\Rightarrow\frac{2018a^2+2019b^2}{2018a^2-2019b^2}=\frac{2018c^2+2019d^2}{2018c^2-2019d^2}\left(dpcm\right)\)