K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2018

Ta có : 

\(\left(a+2\right)^2\ge8a\)

\(\Leftrightarrow\)\(a^2+4a+4\ge8a\) ( áp dụng đẳng thức ) 

\(\Leftrightarrow\)\(a^2-4a+4\ge0\) ( trừ 2 vế cho 8a ) 

\(\Leftrightarrow\)\(a^2-2.2a+2^2\ge0\)

\(\Leftrightarrow\)\(\left(a-2\right)^2\ge0\) ( thoã mãn với mọi a ) 

Vậy \(\left(a+2\right)^2\ge8a\)

Chúc bạn học tốt ~ 

16 tháng 4 2018

\(\left(a+2\right)^2-8a=a^2+4a+4-8a\)

\(=a^2-4a+4=\left(a-2\right)^2\ge0\)suy ra đpcm

a)\(2a^3+8a\le a^4+16\)

\(\Leftrightarrow a^4-2a^3-8a+16\ge0\)

\(\Leftrightarrow a^3\left(a-2\right)-8\left(a-2\right)\ge0\)

\(\Leftrightarrow\left(a-2\right)\left(a^3-8\right)\ge0\)

\(\Leftrightarrow\left(a-2\right)\left(a-2\right)\left(a^2+2a+4\right)\ge0\)

\(\Leftrightarrow\left(a-2\right)^2\left(a^2+2a+4\right)\ge0\)(luôn đúng)

=>đpcm

Nhật Linh lm lun:))

\(a^2+2a+4=a^2+2a+1+3=\left(a+1\right)^2+3>0\left(đpcm\right)\)

15 tháng 4 2018

1a)Xét a2 + 5 - 4a =a2 - 4a + 4+1=(a - 2)2+1\(\ge\)1 hay (a -2)+ 1 > 0 

\(\Rightarrow\)Đpcm

  b)Xét 3(a+ b+ c2) -(a + b +c)=3a+ 3b+ 3c- a- b- c- 2ab - 2ac - 2bc

                                                  =2a+ 2b+ 2c - 2ab - 2ac - 2bc

                                                  =(a - b)+ (a - c)+ (b - c)2\(\ge\)0 (với mọi a,b,c)

\(\Rightarrow\)Đpcm

2)Xét A=\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(a+c+b\right)=3+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}\)

         áp dụng cô-sy

\(\Rightarrow\)A\(\ge\)9

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=3\)

3 tháng 5 2017

2 ) đề sai rùi bạn ơi ! Mk giải theo đề đúng nka !! 

CMR : nếu  \(a+b>1\)thì  \(a^2+b^2>\frac{1}{2}\)

 Ta có : \(a+b>1>0\)                                                                     ( 1 )

Bình phương hai vế ta được : 

                \(\left(a+b\right)^2>1\)\(\Leftrightarrow a^2+2ab+b^2>1\)                    ( 2 )

Mặt khác :

                 \(\left(a-b\right)^2\ge0\)\(\Leftrightarrow a^2-2ab+b^2\ge0\)                   ( 3 )

Cộng từng vế của (2) và (3) , ta được: 

                  \(2a^2+2b^2>1\)\(\Leftrightarrow2\left(a^2+b^2\right)>1\)\(\Leftrightarrow a^2+b^2>\frac{1}{2}\left(dpcm\right)\)

tk cko  mk nka vì công ngồi đánh máy tình !!! 

         

3 tháng 5 2017

Biết   \(a>b\)và   \(b>2\)\(\Leftrightarrow a>2\)

Ta có :  \(a>2\)

\(\Leftrightarrow-3a< -6\)( Nhân 2 vế với -3 bất đẳng thức đổi chiều )

\(\Leftrightarrow-3a+6< 0\)(Cộng 2 vế với 6)

\(\Leftrightarrowđpcm\)

tk nka !1

10 tháng 3 2018

Ta có a> 2 và b>2 nên a(b-2)>0 và b(a-2) >0. 
Vậy a(b-2)+b(a-2) >0 <=> 2[ab -a -b] >0 <=> ab > a+ b

10 tháng 3 2018

Xét : 2ab-2.(a+b)

= 2ab-2a-2b

= (ab-2a)+(ab-2b)

= a.(b-2)+b.(a-2)

Vì a>2 ; b>2 => a-2 > 0 ; b-2 > 0

=> a.(b-2)+b.(a-2) > 0

<=> 2ab > 2.(a+b)

<=> ab > a+b

Tk mk nha

19 tháng 7 2018

Vì a>2=>a=2+m, b>2=>b=2+n (m,n thuộc N*)

=>a.b=(2+m).(2+n)=2.(2+n)+m.(2+n)=4+2n+2m+mn=4+m+m+n+n+mn=(4+m+n)+(m+n+mn)=(2+m)+(2+n)+(m+n+mn)>(2+m)+(2+m)=a.b

=>ĐPCM

19 tháng 7 2018

Vì \(a>2\)

và \(b>2\)

\(\Rightarrow a>0\)và \(b>0\)

Vì \(a>2\)và \(b>0\)

\(\Rightarrow ab>2b\)(1)

Vì \(b>2\)và \(a>0\)

\(\Rightarrow ab>2a\) (2)

Cộng vế tương ứng (1) và (2) ta có :

\(2ab>2\left(a+b\right)\)

\(\Rightarrow ab>a+b\)(đpcm)

20 tháng 6 2018

a   \(2a>b;2a>0\Rightarrow2a+2a>b+0\Rightarrow4a>b\)

b   \(4a^2+b^2=5ab\Rightarrow4a^2+b^2-5ab=0\Rightarrow\left(4a^2-4ab\right)-\left(ab-b^2\right)=0\)

\(\Rightarrow4a\left(a-b\right)-b\left(a-b\right)=0\Rightarrow\left(4a-b\right)\left(a-b\right)=0\Rightarrow\hept{\begin{cases}4a-b=0\Rightarrow4a=b\\a-b=0\Rightarrow a=b\end{cases}}\)

20 tháng 6 2018

c  \(20=4\cdot5>11\)mà \(2\cdot5=10>11\)đâu 

sai đề r