Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Có: 1+1/2^2+1/3^2+...+1/100^2<A=1+1/1.2+1/2.3+...+1/99.100
Mà: A=1+1-1/2+1/2-1/3+...+1/99-1/100
=> A=2-1/100<2
=> 1+1/2^2+1/3^2+...+1/100^2<2.
b) Đặt B=1/21+1/22+...+1/60
Tách B thành 2 nhóm:
C=(1/21+1/22+...+1/40)
D=(1/41+1/42+...+1/60)
* Mỗi nhóm C và D có 20 phân số:
** => C+D>(1/40+1/60).20
=> C+D>1/24.20
=> C+D>5/6
Mà: 5/6>11/15=> C+D=B>11/15 (1)
** Có: C+D<(1/21+1/41).20
=> C+D<62/861.20
=> C+D<1240/861
Có: 1240/861 xấp xỉ 1,44<1,5
=> C+D=B<3/2 (2)
(1) và (2) => đpcm.
Ta có:A=1/21+1/22+1/23+...+1/40(có 20 số hạng)
A>1/40+1/40+...+1/40
A>20/40=1/2(1)
A=1/21+1/22+1/23+...+1/40(có 20 số hạng)
A<1/20+1/20+1/20+...+1/20
A<20/20=1(2)
Từ (1) và (2)=>1/2<A<1
Ta có :A=1/2+1/2^2+1/2^3+...+1/2^100
2A=1+1/2+1/2^2+...+1/2^99
2A-A=(1+1/2+1/2^2+...+1/2^99)-(1/2+1/2^2+1/2^3+...+1/2^100)
A=1-1/2^100
Dễ thấy A>0 và 1-1/2^100<1
=>0<A<1
Ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{100^2}< \frac{1}{99.100}\)
=> \(A< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
=> \(A< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
=> \(A< 1+1-\frac{1}{100}\)
=> \(A< 2-\frac{1}{100}< 2\)
Vậy \(A=1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< 2\)(đpcm)