Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Với $m^2+(m+1)^2>0$ ta thấy:
PT \(\Leftrightarrow \frac{m}{\sqrt{m^2+(m+1)^2}}\sin x+\frac{m+1}{\sqrt{m^2+(m+1)^2}}\cos x=\frac{-1}{\sqrt{m^2+(m+1)^2}}(*)\)
Vì \((\frac{m}{\sqrt{m^2+(m+1)^2}})^2+(\frac{m+1}{\sqrt{m^2+(m+1)^2}})^2=1\) nên tồn tại $a$ sao cho:
\(\sin a=\frac{m}{\sqrt{m^2+(m+1)^2}}; \cos a=\frac{m+1}{\sqrt{m^2+(m+1)^2}}\). Khi đó:
\((*)\Leftrightarrow \sin a\sin x+\cos a\cos x=\frac{-1}{\sqrt{m^2+(m+1)^2}}\)
\(\Leftrightarrow \cos (x-a)=\frac{-1}{\sqrt{m^2+(m+1)^2}}\)
Để PT có nghiệm thì \(\frac{-1}{\sqrt{m^2+(m+1)^2}}\in [-1;1]\Leftrightarrow m^2+(m+1)^2\geq 1\)
Đặt \(\frac{-1}{\sqrt{m^2+(m+1)^2}}=\cos b(1)\Rightarrow \cos (x-a)=\cos b\)
\(\Leftrightarrow x=a\pm b+2k\pi \) ($k_i$ nguyên)
PT có 2 nghiệm có dạng $x_1=a+b+2k_1\pi$ và $x_1=a-b+2k_2\pi$ (nếu $x_1,x_2$ cùng họ nghiệm thì $|x_1-x_2|=|2n\pi|\neq \frac{\pi}{2}$)
\(\Rightarrow |x_1-x_2|=|2b+2(k_1-k_2)\pi|\)
\(\Rightarrow \cos |x_1-x_2|=\cos |2b+2(k_1-k_2)\pi|=\cos 2b=\cos \frac{\pi}{2}=0\)
\(\Leftrightarrow 2\cos ^2b-1=0\Leftrightarrow \cos ^2b=\frac{1}{2}\). Kết hợp vs $(1)$ suy ra $m^2+(m+1)^2=2$
$\Rightarrow m=\frac{-1\pm \sqrt{3}}{2}$
Thử lại thấy thỏa mãn.
Lời giải:
Với $m^2+(m+1)^2>0$ ta thấy:
PT \(\Leftrightarrow \frac{m}{\sqrt{m^2+(m+1)^2}}\sin x+\frac{m+1}{\sqrt{m^2+(m+1)^2}}\cos x=\frac{-1}{\sqrt{m^2+(m+1)^2}}(*)\)
Vì \((\frac{m}{\sqrt{m^2+(m+1)^2}})^2+(\frac{m+1}{\sqrt{m^2+(m+1)^2}})^2=1\) nên tồn tại $a$ sao cho:
\(\sin a=\frac{m}{\sqrt{m^2+(m+1)^2}}; \cos a=\frac{m+1}{\sqrt{m^2+(m+1)^2}}\). Khi đó:
\((*)\Leftrightarrow \sin a\sin x+\cos a\cos x=\frac{-1}{\sqrt{m^2+(m+1)^2}}\)
\(\Leftrightarrow \cos (x-a)=\frac{-1}{\sqrt{m^2+(m+1)^2}}\)
Để PT có nghiệm thì \(\frac{-1}{\sqrt{m^2+(m+1)^2}}\in [-1;1]\Leftrightarrow m^2+(m+1)^2\geq 1\)
Đặt \(\frac{-1}{\sqrt{m^2+(m+1)^2}}=\cos b(1)\Rightarrow \cos (x-a)=\cos b\)
\(\Leftrightarrow x=a\pm b+2k\pi \) ($k_i$ nguyên)
PT có 2 nghiệm có dạng $x_1=a+b+2k_1\pi$ và $x_1=a-b+2k_2\pi$ (nếu $x_1,x_2$ cùng họ nghiệm thì $|x_1-x_2|=|2n\pi|\neq \frac{\pi}{2}$)
\(\Rightarrow |x_1-x_2|=|2b+2(k_1-k_2)\pi|\)
\(\Rightarrow \cos |x_1-x_2|=\cos |2b+2(k_1-k_2)\pi|=\cos 2b=\cos \frac{\pi}{2}=0\)
\(\Leftrightarrow 2\cos ^2b-1=0\Leftrightarrow \cos ^2b=\frac{1}{2}\). Kết hợp vs $(1)$ suy ra $m^2+(m+1)^2=2$
$\Rightarrow m=\frac{-1\pm \sqrt{3}}{2}$
Thử lại thấy thỏa mãn.
Vì 3 nghiệm phân biệt : \(x_1,x_2,x_3\) lập thàng cấp số cộng, nên ta có thể đặt :
\(x_1=x_0-d,x_2=x_0;x_3=x_0+d\left(d\ne0\right)\). Theo giả thiết ta có :
\(x^3+3x^2-\left(24+m\right)x-26-n=\left(x-x_1\right)\left(x-x_2\right)\left(x-x_3\right)\)
\(=\left(x-x_0+d\right)\left(x-x_0\right)\left(x-x_0-d\right)\)
\(=x^3-3x_0x^2+\left(3x^2_0-d^2\right)x-x^3_0+x_0d^2\) với mọi x
Đồng nhất hệ số ở hai vế của phương trình ta có hệ :
\(\begin{cases}-3x_0=3\\3x_0^2-d^2=-\left(24+m\right)\\-x_0^3+x_0d^2=-26-n\end{cases}\) \(\Leftrightarrow\begin{cases}x_0=-1\\3-d^2=-24-m\\1-d^2=-26-n\end{cases}\) \(\Leftrightarrow\begin{cases}x_0=-1\\m=n\end{cases}\)
Vậy với m = n thì 3 nghiệm phân biệt của phương trình lập thành cấp số cộng
\(f\left(x\right)=x^3-3x^2+\left(2m-2\right)x+m-3\\ f'\left(x\right)=3x^2-6x+2m-2\\ \Delta'_{f'}=-6m+15\)
Phương trình có 3 nghiệm phân biệt \(\Leftrightarrow\left\{{}\begin{matrix}\Delta'_{f'}=-6m+15>0\\y_{CĐ}y_{CT}< 0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}m< \frac{5}{2}\\\left[\left(\frac{4}{3}m-\frac{10}{3}\right)x_{CĐ}+\frac{5}{3}m-\frac{11}{3}\right]\left[\left(\frac{4}{3}m-\frac{10}{3}\right)x_{CT}+\frac{5}{3}m-\frac{11}{3}\right]\end{matrix}\right.\\ \left\{{}\begin{matrix}m< \frac{5}{2}\\32m^3+3m^2-534m+823< 0\end{matrix}\right.\left(k\right)}\)
Theo định lí Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2+x_3=3>0\\x_1x_2+x_2x_3+x_3x_1=2m-2\\x_1x_2x_3=3-m>0\end{matrix}\right.\)
Từ \(x_1< -1< x_2< x_3\Rightarrow\left(x_1+1\right)\left(x_2+1\right)\left(x_2+1\right)< 0\)
Và từ \(\left(x_1+1\right)\left(x_2+1\right)\left(x_3+1\right)< 0\), do Viet ở trên nên \(x_1< -1< x_2< x_3\)
Vậy phương trình có 3 nghiệm thỏa mãn yêu cầu đề bài \(\Leftrightarrow\left(x_1+1\right)\left(x_2+1\right)\left(x_3+1\right)< 0\\ \Leftrightarrow x_1x_2x_3+x_1x_2+x_2x_3+x_3x_1+x_1+x_2+x_3+1< 0\\ \Leftrightarrow3-m+2m-2+3+1< 0\Leftrightarrow m< -5\)
Với m<-5 thì thỏa mãn điều kiện (k) ở trên. Vậy -10<m<-5
Để pt đã cho vô nghiệm thì:
\(1^2+\left(m-1\right)^2< \left(\sqrt{5}\right)^2\)
\(\Leftrightarrow\left(m-1\right)^2< 4\)
\(\Rightarrow-2< m-1< 2\)
\(\Rightarrow-1< m< 3\)
Bài toán chia kẹo kinh điển đây mà.
Trước hết chúng ta đếm 1 chút theo kiểu lớp 1 lớp 2 gì đó: có 1 đoạn thẳng, cần chia đoạn thẳng ấy làm 3 phần, vậy cần chấm lên đoạn thẳng ấy mấy điểm? Câu trả lời rõ ràng là 2 điểm. Cần chia 1 con cá thành 3 khúc, ta cần 2 nhát cắt; cần ngăn 4 con cọp xếp hàng ngang để chúng đỡ cắn nhau, ta cần 3 vách ngăn. Hay để chia 1 đối tượng làm n phần, ta cần dùng n-1 vách ngăn để chia nó ra, Như thế này:
Bây giờ có số tự nhiên n, ta phân tích nó như sau:
\(n=1+1+1+...+1+1+1\)
Giả sử ta "vách ngăn" vào một vài vị trí giữa các số 1, kiểu thế này:
\(1+1+\left|1+1+1\right|+1+|1+1+...+1\)
Rõ ràng với 3 vách ngăn trên, ta chia n thành 3+1=4 phần, mỗi phần đều có giá trị nguyên dương, lần lượt là 2,3,1,n-6.
Bây giờ cần chia dãy \(1+1+...+1\) trên thành m phần, vậy cần đặt bao nhiêu vách ngăn? Cũng như ban đầu đã phân tích, ta cần đặt \(m-1\) tấm vách ngăn.
Ta có bao nhiêu vị trí để đặt \(m-1\) vách ngăn nói trên? Có n số 1, ta sẽ có \(n-1\) vị trí đặt vách ngăn, sao cho giữa 2 vách ngăn có ít nhất một số 1 (hay giữa 2 vách ngăn luôn là 1 giá trị nguyên dương).
Tóm lại, để chia dãy tổng \(1+1+...+1\) (n số hạng) thành m phần, sao cho mỗi phần chứa ít nhất một số 1, ta cần đặt \(m-1\) tấm vách ngăn vào \(n-1\) vị trí khả dĩ. Như vậy, ta có \(C_{n-1}^{m-1}\) cách.
Hiển nhiên, giá trị của mỗi phần (tức là tổng các số 1 trong phần đó) chính là giá trị nghiệm \(x_i\) của pt \(\sum\limits^m_{i=1}x_i=n\). Vậy pt có \(C_{n-1}^{m-1}\) nghiệm nguyên dương.
//Bay giờ tới nghiệm tự nhiên thì đơn giản, số tự nhiên khác số nguyên dương đúng 1 số 0, bây giờ ta "loại" nó đi là ra bài toán bên trên. Bằng cách đặt \(y_1=x_1+1;y_2=x_2+1...;y_m=x_m+1\), ta đảm bảo \(y_i\) luôn nguyên dương khi \(x_i\) tự nhiên.
Khi đó:
\(y_1+y_2+...+y_m=\left(x_1+1\right)+\left(x_2+1\right)+...+\left(x_m+1\right)\)
\(=\left(x_1+x_2+...+x_m\right)+m=n+m\)
Quay về bài trên, ta có pt \(y_1+y_2+...+y_m=n+m\) có \(C_{n+m-1}^{m-1}\) nghiệm.
Ứng với mỗi \(y_i\) cho đúng 1 giá trị \(x_i=y_i-1\) tương ứng, do đó pt:
\(\sum\limits^m_{i=1}x_i=n\) có \(C_{n+m-1}^{m-1}\) nghiệm tự nhiên
Công thức đầu của em có vẻ bị sai :D
Wow, big brain, cảm ơn thầy nhiều ;) (mà hình như 2 công thức đó bằng nhau vì \(C^k_n=C^{n-k}_n\) ấy thầy).