Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(n^4+2n^3-13n^2-14n+24\)
\(=\left(n^4+2n^3-n^2-2n\right)-12n^2-12n+24\)
\(=\left(n-1\right)n\left(n+1\right)\left(n+2\right)-12n^2-12n+24⋮6\)
Em chưa học làm dạng này , em làm thử thôi nhá, sai xin chỉ dạy thêm nha
2 . \(\dfrac{n^7+n^2+1}{n^8+n+1}=\dfrac{n^7-n+n^2+n+1}{n^8-n^2+n^2+n+1}\)
\(=\dfrac{n\left(n^6-1\right)+n^2+n+1}{n^2\left(n^6-1\right)+n^2+n+1}=\dfrac{n\left(n^3+1\right)\left(n^3-1\right)+n^2+n+1}{n^2\left(n^3+1\right)\left(n^3-1\right)+n^2+n+1}\)\(=\dfrac{n\left(n^3+1\right)\left(n-1\right)\left(n^2+n+1\right)+n^2+n+1}{n^2\left(n^3+1\right)\left(n-1\right)\left(n^2+n+1\right)+n^2+n+1}\)
\(=\dfrac{\left(n^2+n+1\right)\left[\left(n^4+n\right)\left(n-1\right)\right]}{\left(n^2+n+1\right)\left[\left(n^5+n^2\right)\left(n-1\right)+1\right]}\)
\(=\dfrac{n^5-n^4+n^2-n}{n^6-n^5+n^3-n^2+1}=\dfrac{n^4\left(n-1\right)+n\left(n-1\right)}{n^5\left(n-1\right)+n^2\left(n-1\right)+1}\)
\(=\dfrac{\left(n-1\right)\left(n^4+n\right)}{\left(n-1\right)\left(n^5+n^2\right)+1}\)
Vậy ,với mọi số nguyên dương n thì phân thức trên sẽ không tối giản
ta có : \(P=n\left(2n-3\right)-2n\left(n+2\right)=2n^2-3n-2n^2-4n=-7n⋮7\forall n\in Z\left(đpcm\right)\)
a) \(P=2+2^2+2^3+...+2^{2011}+2^{2012}\)
\(P=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2011}+2^{2012}\right)\)
\(P=\left(2+2^2\right)+2^2\left(2+2^2\right)+...+2^{2010}\left(2+2^2\right)\)
\(P=6+2^2\cdot6+...+2^{2010}\cdot6\)
\(P=6\cdot\left(1+2^2+...+2^{2010}\right)\) chia hết cho 6
=> P chia hết cho 6
b) Ta có: \(A=n^4+2n^3+2n^2+2n+1\)
\(A=\left(n^4+2n^3+n^2\right)+\left(n^2+2n+1\right)\)
\(A=n^2\left(n+1\right)^2+\left(n+1\right)^2\)
\(A=\left(n+1\right)^2\left(n^2+1\right)\)
Để A là số chính phương thì \(n^2+1\) cũng phải là số chính phương
Đặt \(n^2+1=x^2\left(x\inℤ\right)\)
\(\Rightarrow x^2-n^2=1\Leftrightarrow\left(x-n\right)\left(x+n\right)=1=1\cdot1=\left(-1\right)\cdot\left(-1\right)\)
\(\Rightarrow x-n=x+n\Rightarrow n=0\)
Mà n > 0 => Không tồn tại n thỏa mãn
=> A không là số chính phương
=> đpcm
a) \(49-x^2+2xy-y^2\)
\(=49-\left(x^2-2xy+y^2\right)\)
\(=49-\left(x-y\right)^2\)
\(=\left(7-x+y\right)\left(7+x-y\right)\)
c) \(\frac{1}{36}a^2-\frac{1}{4}b^2\)
\(=\frac{1}{4}\left(\frac{1}{9}a^2-b^2\right)\)
\(=\frac{1}{4}\left(\frac{1}{3}a-b\right)\left(\frac{1}{3}a+b\right)\)
a) Gọi ƯCLN(3n+1;5n+2) là d
ta có: 3n+1 chia hết cho d => 15n + 5 chia hết cho d
5n + 2 chia hết cho d => 15n + 6 chia hết cho d
=> 15n + 6 - 15n - 5 chia hết cho d
=> 1 chia hết cho d
=> 3n+1/5n+2 là phân số tối giản
gọi d là ƯC(3n + 1; 5n + 2) (d thuộc Z)
\(\Rightarrow\hept{\begin{cases}3x+1⋮d\\5n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}5\left(3n+1\right)⋮d\\3\left(5n+2\right)⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+5⋮d\\15n+6⋮d\end{cases}}}}\)
=> (15n + 5) - (15n + 6) ⋮ d
=> 15n + 5 - 15n - 6 ⋮ d
=> (15n - 15n) - (6 - 5) ⋮ d
=> 0 - 1 ⋮ d
=> 1 ⋮ d
=> d = 1 hoặc d = -1
vậy \(\frac{3n+1}{5n+2}\) là phân số tối giản với mọi n thuộc N
\(A=n^4+2n^3-n^2-2n\)
\(=n^3\left(n+2\right)-n\left(n-2\right)\)
\(=n\left(n+1\right)\left(n-1\right)\left(n-2\right)\)
Mà \(\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮4\forall n\in Z\)
=> đpcm