K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2017

Đặt :

\(A=\frac{1}{2^2}+\frac{1}{3^2}+.........+\frac{1}{100^2}\)

Ta thấy :

\(\frac{1}{2^2}< \frac{1}{1.2}\)

\(\frac{1}{3^2}< \frac{1}{2.3}\)

...................

\(\frac{1}{100^2}< \frac{1}{99.100}\)

\(\Leftrightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{99.100}\)

\(\Leftrightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{99}-\frac{1}{100}\)

22 tháng 8 2017

Đặt \(A=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{100^2}\)

\(A=\left(\frac{1}{2^2}\right)\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)\)

Đặt \(C=1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)

Ta có :

\(\frac{1}{2^2}< \frac{1}{1.2}\)

\(\frac{1}{3^2}< \frac{1}{2.3}\)

\(.......\)

\(\frac{1}{50^2}< \frac{1}{49.50}\)

\(\Rightarrow C< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(\Rightarrow C< 2-\frac{1}{50}=\frac{99}{50}\)

\(\Rightarrow A=\frac{1}{4}.\frac{99}{50}=\frac{99}{200}< \frac{1}{2}\)

\(\Rightarrow A< \frac{1}{2}\)

23 tháng 6 2020

Ta có:

\(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)

                                                                        \(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)

                                                                        \(=\frac{1}{2}-\frac{1}{100}\)

                                                                       \(=\frac{49}{100}\)

Mà \(\frac{49}{100}< \frac{1}{2}\)

Vậy \(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{2}\)

23 tháng 6 2020

Ta có:\(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)(1)

Xét\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)

\(=\frac{1}{2}-\frac{1}{100}\)

\(=\frac{50}{100}-\frac{1}{100}\)

\(=\frac{49}{100}\)(2)

\(\frac{49}{100}< \frac{50}{100}=\frac{1}{2}\)(3)

Từ (1), (2), (3)\(\Rightarrow\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{2}\left(đpcm\right)\)

Vậy...

Linz

29 tháng 4 2017

\(A=\frac{1}{2^2}\left(1+\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{50^2}\right)\)

Ta có :

\(\frac{1}{2^2}< \frac{1}{1.2}=1-\frac{1}{2}\)

\(\frac{1}{3^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)

\(\frac{1}{4^2}< \frac{1}{3.4}=\frac{1}{3}-\frac{1}{4}\)

\(.......\)

\(\frac{1}{50^2}< \frac{1}{49.50}=\frac{1}{49}-\frac{1}{50}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{49}-\frac{1}{50}=1-\frac{1}{50}< 1\)

\(\Rightarrow1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{50^2}< 2\)

\(\Rightarrow A< \frac{1}{2^2}.2=\frac{1}{2}\) (đpcm)

29 tháng 4 2017

\(A=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{100^2}\)

\(A< \frac{1}{2^2-1}+\frac{1}{4^2-1}+\frac{1}{6^2-1}+...+\frac{1}{100^2-1}\)

\(A< \frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\)

\(2A< \frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)

\(2A< \frac{1}{1}-\frac{1}{101}< 1\Rightarrow2A< 1\Rightarrow A< \frac{1}{2}\left(đpcm\right)\)

2 tháng 5 2016

Ta có: 1/2^2 < 1/1.2

          1/3^2 < 1/2.3 

        .........................

.......................................

          1/100^2 < 1/99.100

Ta có: 1/2^2 + 1/3^2 + 1/4^2 +......+1/100^2 < 1/1.2 + 1/2.3 + 1/3.4 + ...... + 1/99.100

          1/2^2 + 1/3^2 + 1/4^2 +......+1/100^2 < 1 - 1/100

          1/2^2 + 1/3^2 + 1/4^2 +......+1/100^2 < 99/100 < 3/4

         1/2^2 + 1/3^2 + 1/4^2 +......+1/100^2 < 3/4

2 tháng 5 2016

Ta có: 1/2^2 < 1/1.2

          1/3^2 < 1/2.3 

        .........................

.......................................

          1/100^2 < 1/99.100

Ta có: 1/2^2 + 1/3^2 + 1/4^2 +......+1/100^2 < 1/1.2 + 1/2.3 + 1/3.4 + ...... + 1/99.100

          1/2^2 + 1/3^2 + 1/4^2 +......+1/100^2 < 1 - 1/100

          1/2^2 + 1/3^2 + 1/4^2 +......+1/100^2 < 99/100 < 3/4

         1/2^2 + 1/3^2 + 1/4^2 +......+1/100^2 < 3/4

28 tháng 4 2016

Gọi tổng trên là A

A = 1/3.3 + 1/4.4 +.....+ 1/100.100

A < 1/2.3 + 1/3.4 +.....+ 1/99.100

A < 1/2 - 1/3 + 1/3 - 1/4 +.....+ 1/99 - 1/100

A < 1/2 - 1/100

A < 49/100 < 1/2

=> A < 1/2 (đpcm)

Ai k mk mk k lai cho !!

29 tháng 6 2020

\(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{100^2}=\frac{1}{2^2}\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)\)

Ta có : \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(< 1-\frac{1}{50}< 1\)

\(\Rightarrow\) \(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 1+1=2\)

\(\Rightarrow\) \(\frac{1}{2^2}\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)< \frac{1}{2^2}.2=\frac{1}{2}\)

\(\Rightarrow\) \(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{2}\)

\(\Rightarrow\) đpcm

17 tháng 2 2017

\(B=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+....+\frac{1}{100^2}=\frac{1}{4}\left(1+\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{50^2}\right)< \frac{1}{4}\left(1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{49.50}\right)\\ =\frac{1}{4}\left(1+\frac{1}{1}-\frac{1}{50}\right)=\frac{1}{4}.\left(2-\frac{1}{50}\right)\\ =\frac{1}{4}.\frac{99}{50}=\frac{99}{200}< \frac{1}{2}\left(\text{đ}pcm\right)\)

Chúc bạn hoc tốt!!!!!!!