K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2016

a, a2 + ab + 2a + 2b

= a(a + b) + 2(a + b)

= (2 + a)(a + b) chia hết cho a + b

b, Gọi 3 số nguyên liên tiếp là a; a + 1; a + 2

Ta có:

a + (a + 1) + (a + 2) = 3a + 3 = 3(a + 1) chia hết cho 3

5 tháng 2 2016

a)

=a^2+a.b+2a+2b

=a.a+a.b+2a+2b

=a(a+b)+2(a+b)

=(a+2).(a+b)

vì (a+b)chia hết cho (a+b)

=>a+2chia hết cho a+b

=>tổng (2+a)(a+b)=(a^2+a.b+2a+2b)chia hết cho (a+b)

b)

gọi 3 số nguyên liên tiếp là a;a+1;a+2

=>tổng là a+(a+1)+(a+2)

=a.a.a+3

=> tổng 3 số liên tiếp thì chia hết cho 3

6 tháng 9 2015

b) Giar sử gọi 3 số tự nhiên liên tiếp là: a, a+1,a+2.

Theo đề bài ta có :

A = a(a + 1) (a + 2) + 6

Ta có 6 = 3x2 mà ( 3,2) = 1

A + 2 vì trong A số tự nhiên liên tiếp có một số chia hết cho 2

A + 3 vì trong A số tự nhiên liên tiếp có một số chia hết cho 3

      Vậy tích của 3 STN liên tiếp chia hết cho 6.

 

15 tháng 10 2019

Bài 1

Gọi 3 số tự nhiên liên tiếp là n; n+1; n+2. Tổng của chúng là

n+n+1+n+2=3n+3=3(n+1) chia hết cho 3

Gọi 4 số tự nhiên liên tiếp là n; n+1; n+2; n+3. Tổng của chúng là

n+n+1+n+2+n+3=4n+6=4n+4+2=4(n+1)+2 chia cho 4 dư 2

Bài 2

(Xét tính chẵn hoặc lẻ của n)

+ Nếu n lẻ thì n+3 chẵn; n+6 lẻ => (n+3)(n+6) chẵn => chia hết cho 2

+ Nếu n chẵn thì n+3 lẻ, n+6 chẵn => (n+3)(n+6) chẵn => chia hết cho 2

=> (n+3)(n+6) chia hết cho 2 với mọi n

17 tháng 2 2015

huk mìk như pn thuj có 6 đề hsg đây nè

18 tháng 2 2015

Mình giải đc r ^^ 

29 tháng 9 2019

Các bạn giúp mình với

a) Gọi hai số tự nhiên liên tiếp là a và a + 1

Nếu a chia hết cho 2 thì bài toán được chứng minh .

Nếu a không chia hết cho 2 thì  a = 2k + 1 ( k ∈ N)

Suy ra : a + 1 = 2k + 1 + 1

Ta có : 2k  ⋮  2 ; 1 + 1 = 2  ⋮  2

Suy ra  ( 2k +1 +1 ) ⋮  2 hay ( a+ 1) ⋮  2

Vậy trong hai số tự nhiên liên tiếp , có một số chia hết cho 2

b) Gọi ba số tự nhiên liên tiếp là a , a + 1 , a + 2

Nếu a chia hết cho 3 thì bài toán được chứng minh

Nếu a không chia hết cho 3 thì a = 3k + 1  hoặc  a = 3k + 2 ( k ∈ N)

Nếu a = 3k + 1 thì a + 2 = 3k + 1 + 2 = 3k + 3  ⋮ 3

Nếu a = 3k + 2 thì a + 1 = 3k + 2 + 1 = 3k + 3  ⋮ 3

Vậy trong ba số tự nhiên liên tiếp có một số chia hết cho 3.

9 tháng 1 2016

Câu  1: a) Gọi 3 số đó là a ;a+1;a+2

Ta có: a+a+1+a+2=3a+3 

3 chia hết cho 3 => 3a chia hết cho 3

=> 3a+3  chia hết cho 3 

=> Tổng của 3 số tự nhiên liên tiếp luon chia hết cho 3 

b) Gọi 5 số đó là a;a+1;a+2;a+3;a+4 

Ta có: a+a+1+a+2+a+3+a+4 =5a+5 

5 chia hết cho 5 => 5a chia hết cho 5 

=> Tổng của 5 số tự  nhiên liên tiếp luôn chia hết cho 5 

Câu 2 :Tụ làm nhé , mk chịu lun à 

26 tháng 7 2016

Gọi 5 số tự nhiên liên tiếp là:5k;5k+1;5k+2;5k+3;5k+4.

Ta có tổng 5 số:

\(5k+5k+1+5k+2+5k+3+5k+4\)+4

\(=20k+1+2+3+4\)

\(=20k+10\)

\(5.\left(2+4k\right)\) chia hết cho 5.

Phần b em làm tương tự nhé.

Chúc em học tốt^^

2 tháng 3 2020

Đặt A=a(a-1)-ab(a+b)

TH1 : a là số chẵn, b là số lẻ

=> a(a-1) và ab(a+b) là các số chẵn

=> a(a-1) và ab(a+b) đều chia hết cho 2

=> A chia hết cho 2  (1)

TH2 : a là số lẻ, b là số chẵn

=> a(a-1) và ab(a+b) là các số chẵn

=> A chia hết cho 2  (2)

TH3 : a và b là các số lẻ

=> a-1 là số chẵn nên a(a-1) cũng là số chẵn

=> a+b là số chẵn nên ab(a+b) cũng là số chẵn

=> a(a-1)-ab(a+b) là số chẵn

=> A chia hết cho 2  (3)

TH$ : a và b là các số chẵn

=> a(a-1) và ab(a+b) là các số chẵn

=> A chia hết cho 2  (4)

Từ (1), (2), (3) và (4)

=> A chia hết cho 2

Vậy A chia hết cho 2.

Tớ cũng không chắc!

23 tháng 7 2015

Ta có \(31.\left(x+2y\right)=31x+2y=5.\left(6x+11y\right)+\left(x+7y\right)\)

Do 6x + 11y chia hết cho 31 nên \(5.\left(6x+11y\right)\) chia hét cho 31.

\(\Rightarrow\) x + 7y chia hết cho 31 (đpcm).

21 tháng 9 2017

câu a là thế này : 2 số tự nhiên liên tiếp thì sẽ là 1 số chẵn và 1 số lẽ mà số chẵn chắc chắn chia ht cho 2 

 1 số lẽ nhân với 1 số chẵn sẽ là 1 số chẵn

=> 2 số tự nhiên liên tiếp chia ht cho 2