Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2,\\ a,a^3+b^3=a^3=3a^2b+3ab^2+b^3-3a^2b-3ab^2\\ =\left(a+b\right)^3-3ab\left(a+b\right)\\ b,a^3+b^3+c^3-3abc\\ =\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\\ =\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)\\ =\left(a+b+c\right)\left(a^2+b^2+c^2-ac-ab-bc\right)\)
\(A=9\left(\dfrac{4}{1\cdot3\cdot5}+\dfrac{4}{3\cdot5\cdot7}+...+\dfrac{4}{25\cdot27\cdot29}\right)\)
\(=9\left(\dfrac{1}{1\cdot3}-\dfrac{1}{3\cdot5}+\dfrac{1}{3\cdot5}-\dfrac{1}{5\cdot7}+...+\dfrac{1}{25\cdot27}-\dfrac{1}{27\cdot29}\right)\)
\(=9\left(\dfrac{1}{3}-\dfrac{1}{783}\right)=\dfrac{260}{87}\)
`@Neo`
\(\dfrac{b}{a+b}+\dfrac{c}{b+c}+\dfrac{a}{c+a}< 2\)
\(\dfrac{b}{a+b}< \dfrac{b+c}{a+b+c}\)
\(\dfrac{a}{c+a}< \dfrac{a+b}{a+b+c}\)
Cộng vế vs vế:
\(\Rightarrow\dfrac{b}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< \dfrac{b+c}{a+b+c}+\dfrac{a+c}{a+b+c}+\dfrac{b+a}{a+b+c}\)
\(=\dfrac{b+c+a+b+b+c}{a+b+c}\)
\(=\dfrac{2\left(a+b+c\right)}{a+b+c}\)
\(=2\)
Vậy kết quả là `2` .
Sử dụng tính chất ( tự rút ra) : `a/b < (a+n)/(b+n)` ( `n>0` )
Khi đó thì :
`b/(a+b) < (b+c)/(a+b+c)`
`c/(b+c) < (c+a)/(b+c+a)`
`a/(c+a) < (a+b)/(c+a+b)`
Nên `b/(a+b) +c/(b+c)+a/(c+a) < (b+c)/(a+b+c)+(c+a)/(b+c+a)+(a+b)/(c+a+b)`
Ta có :
`(b+c)/(a+b+c)+(c+a)/(b+c+a)+(a+b)/(c+a+b) = (b+c+c+a+a+b)/(a+b+c) = (2 xx (a+b+c))/(a+b+c) =2`
Vậy `b/(a+b) +c/(b+c)+a/(c+a) <2`
Ta có:VT=a(b-c)-a(b+d)
=>VT=-ab-ac-ab-ad(phá ngoặc ra)
=>VT=-ac-ad
=>VT=-a.(c+d)
Mà VP=-a.(c+d)
=>a(b-c)-a(b+d)=-a(c+d)(đpcm)
Lưu ý:VT có nghĩa là vế trái.
VP có nghĩa là vế phải.
nếu A+B=C thì theo quy tắc chuyển vế phải đổi dấu thì A=C-B
đây là 1 dạng tìm x thông thường
A) a.(b + c) - a.(b + d) = a.b + a.c - a.b - a.d B) a.(b - c) + a.(d - c) = a.b - a.c + a.d - a.c
= (a.b - a.b) + (a.c - a.d) = (a.b + a.d) - (a.c - a.c)
= a.c - a.d = a.(b + d) - a.c + a.c
= a.(c - d) = a.(b + d)
C) a.(b - c) - a.(b + d) = a.b - a.c - a.b + a.d
= (a.b - a.b) - (a.c + a.d)
= 0 - a.(c + d)
= -a.(c + d)
vì a=b=c nên a chỉ có thể bằng 0 hoặc 5 mà thôi vì b+c chia hết cho 5
? chứng minh j bn
.............. là gì thế