\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.........+\frac{1}{100...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2018

Trả lời

a) Đặt \(H=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

\(\Rightarrow H< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)

\(\Leftrightarrow H< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Leftrightarrow H< 1-\frac{1}{100}\)

\(\Leftrightarrow H< \frac{99}{100}\)

\(\Leftrightarrow A< 1+\frac{99}{100}\)

Ta thấy \(\frac{99}{100}< 1\Rightarrow A< 2\)

Vậy A<2 (đpcm)

b) Ta có: 1=1

             \(\frac{1}{2}+\frac{1}{3}< \frac{1}{2}+\frac{1}{2}=1\)

               \(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}< \frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}=1\)

               \(\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+...+\frac{1}{15}< \frac{1}{8}+\frac{1}{8}+\frac{1}{8}+...+\frac{1}{8}=1\)

                \(\frac{1}{16}+\frac{1}{17}+...+\frac{1}{31}< \frac{1}{16}+\frac{1}{16}+...+\frac{1}{16}=1\)

                \(\frac{1}{32}+\frac{1}{33}+\frac{1}{34}+...+\frac{1}{63}< \frac{1}{32}+\frac{1}{33}+\frac{1}{34}+...+\frac{1}{63}=1\)

                 \(\Rightarrow B< 1+1+1+1+1+1\)

                 \(\Rightarrow B< 6\)

   Vậy B<6 (đpcm)

30 tháng 4 2018

A=\(1+\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\right)\)

Đặt B=\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+..+\)\(\frac{1}{99.100}=\)\(1-\frac{1}{100}< 1\)

Mà A=1+B=>A=1+B<1+1=2

30 tháng 4 2018

\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 2\)

\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=1-\frac{1}{100}\)

vậy \(A=\frac{99}{100}< 2\left(đpcm\right)\)

B)

ta có : \(1=1\)

\(\frac{1}{2}+\frac{1}{3}< \frac{1}{2}+\frac{1}{2}=1\)

\(\frac{1}{4}+\frac{1}{5}+...+\frac{1}{7}< \frac{1}{4}+...+\frac{1}{4}=\frac{4}{4}=1\)

\(\frac{1}{8}+\frac{1}{9}+...+\frac{1}{15}< \frac{1}{8}+...+\frac{1}{8}=\frac{8}{8}=1\)

\(\frac{1}{16}+\frac{1}{17}+...+\frac{1}{63}< 1\)

tất cả công lại \(\Rightarrow B< 6\)

23 tháng 4 2016

a)A<1+1/1.2 +1/2.3 +1/3.4+...+1/99.100

A<1+1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100

A<2-1/100<2

b)B=1+1/2+(1/3+1/4)+(1/5+1/6+1/7+1/8)+(1/9+...+1/16)+(1/17+1/18+...+1/32)+(1/33+1/34+...+1/63+1/64)-1/64

B<1+1/2+1/2+1/2+1/2+1/2+1/2-1/64

B<1+3-1/64

B<4-1/64<6

30 tháng 4 2019

Bài 1 :

\(x\left(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{49\cdot50}\right)=1\)

\(\Rightarrow x\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\right)=1\)

\(\Rightarrow x\left(\frac{1}{2}-\frac{1}{50}\right)=1\)

\(\Rightarrow x\cdot\frac{24}{50}=1\)

\(\Rightarrow x=1\div\frac{24}{50}=\frac{25}{12}\)

                            #Louis

30 tháng 4 2019

\(\frac{1}{2.3}x+\frac{1}{3.4}x+\frac{1}{4.5}x+...+\frac{1}{49.50}x=1\)

\(\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{49.50}\right)x=1\)

\(\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{50}\right)x=1\)

\(\left(\frac{1}{2}-\frac{1}{50}\right)x=1\)

\(\frac{12}{25}x=1\)

Đến đây dễ rồi :)))

Bn tự tính típ nha

26 tháng 4 2019

a, \(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

\(\Rightarrow A< 1+\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)

\(\Rightarrow A< 1+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(\Rightarrow A< 1+\left(1-\frac{1}{100}\right)\Rightarrow A< 1+1-\frac{1}{100}\Rightarrow A< 2-\frac{1}{100}\Rightarrow A< 2\left(ĐPCM\right)\)

b, \(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2012^2}\)

\(\Rightarrow B< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2011\cdot2012}\)

\(\Rightarrow B< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2011}-\frac{1}{2012}\)

\(\Rightarrow B< 1-\frac{1}{2012}\Rightarrow B< 1\left(1\right)\)

\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2012^2}\)

\(\Rightarrow B>\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{2012\cdot2013}\)

\(\Rightarrow B>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2012}-\frac{1}{2013}\)

\(\Rightarrow B>\frac{1}{2}-\frac{1}{2013}\Rightarrow\frac{1}{2}-\frac{1}{2013}< B\left(2\right)\)

Từ (1) và (2) => \(\frac{1}{2}-\frac{1}{2013}< B< 1\)

26 tháng 4 2019

a)A=1+1/22+1/32+....+1/1002

      <1+1/1.2+1/2.3+...+1/99.100=1+1-1/2+1/2-1/3+...+1/99-1/100=2-1/100=199/200<2

b)B=1/22+1/32+...+1/20122

     <1/1.2+1/2.3+...+1/2011.2012=1-1/2+1/2-1/3+...+1/2011-1/2012=1-1/2012=2011/2012

     1/2-1/2013=2011/4026<2011/2012<1

4 tháng 4 2017

b, Ta có : \(\frac{1}{2^2}< \frac{1}{1.2}\)

                \(\frac{1}{3^2}< \frac{1}{2.3}\)

                ..................

                 \(\frac{1}{100^2}< \frac{1}{99.100}\)

Nên C < \(1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.......+\frac{1}{99.100}\)

<=> C < \(1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{99}-\frac{1}{100}\)

<=> C < \(1+1-\frac{1}{100}\)

<=> C < \(2-\frac{1}{100}=\frac{199}{100}\)

4 tháng 4 2017

\(B=1+\left(\frac{1}{2}+\frac{1}{3}\right)+\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)+...+\left(\frac{1}{2^5}+...+\frac{1}{2^6-1}\right)\)

\(B< 1+\frac{1}{2}.2+\frac{1}{4}.4+...+\frac{1}{2^5}.32\)

\(B< 1+1+1+...+1\)( 6 số 1)

B<1.6=6

\(C=1+\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)\)

\(C< 1+\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.10}\right)=1+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)\(=1+\left(1-\frac{1}{100}\right)< 1+1=2\)

Vậy C<2

2 tháng 5 2017

a, \(\frac{1}{5}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{61}+\frac{1}{62}+\frac{1}{63}=\frac{1}{5}+\left(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}\right)+\left(\frac{1}{61}+\frac{1}{62}+\frac{1}{63}\right)\)

Ta có: \(\frac{1}{13}< \frac{1}{12};\frac{1}{14}< \frac{1}{12};\frac{1}{15}< \frac{1}{12}\Rightarrow\frac{1}{13}+\frac{1}{14}+\frac{1}{15}< \frac{1}{12}+\frac{1}{12}+\frac{1}{12}=\frac{3}{12}=\frac{1}{4}\)

\(\frac{1}{61}< \frac{1}{60};\frac{1}{62}< \frac{1}{60};\frac{1}{63}< \frac{1}{60}\Rightarrow\frac{1}{61}+\frac{1}{62}+\frac{1}{63}< \frac{1}{60}+\frac{1}{60}+\frac{1}{60}=\frac{3}{60}=\frac{1}{20}\)

\(\Rightarrow\frac{1}{5}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{61}+\frac{1}{62}+\frac{1}{63}< \frac{1}{5}+\frac{1}{4}+\frac{1}{20}=\frac{1}{2}\)

Vậy...

2 tháng 5 2017

b, Đặt A là tên của tổng trên

Ta có: \(A=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{100^2}=\frac{1}{2^2}\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\right)\)

Đặt B là biêu thức trong ngoặc

Ta có: \(1=1;\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};....;\frac{1}{50^2}< \frac{1}{49.50}\)

\(\Rightarrow B< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)

\(\Rightarrow B< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(\Rightarrow B< 2-\frac{1}{50}< 2\)

Thay B vào A ta được:

\(A< \frac{1}{2^2}.2=\frac{1}{2}\)