Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Ta có
\(351^{37}\) chia hết cho 9 vì 351 chia hết cho 9
\(942^{60}=\left(942^2\right)^{60}\)
Ta có
942 chia hết cho 3
Mà 3 là số nguyên tố
=> 9422 chia hết cho 32
=> 9422 chia hết cho 9
\(\Rightarrow\left(942^2\right)^{30}\) chia hết cho 9
=> đpcm
Cm chia hết cho 2
Vì \(351^{37}\) không chia hết cho 2 mà \(942^{60}\) chia hết cho 2
=> Sai đề
a) Các số có c/số tận cung là 2 có lũy thừa được kết quả có c/số tân cung lặp lại theo quy luật 1 nhóm 4 c/số sau (2;4;8;6)
ta có 60: 4=15(nhóm) => 942^60 có c/số tận cùng là c/số tận cùng của nhóm thứ 15 và là c/số 6
mặt khác 351^37 có kết quả có c/số tận cùng là 1 (vì 351 có c/số tận cung =1)
=>kết quả phép trừ 942^60 - 351^37 có c/số tận cùng là: 6-1=5
=>942^60 - 351^37 chia hết cho 5
b/ giải thích tương tự câu a ta có
99^5 có c/số tận cùng là: 9
98^4 có c/số tận cung là: 6
97^3 có c/số tận cùng là: 3
96^2 có c/số tận cùng là: 6
=> 99^5 - 98^4 + 97^3 - 96^2 có c/số tận cùng là: 9-6+3-6=0
vậy 99^5 - 98^4 + 97^3 - 96^2 chia hết cho 2 và 5 vì có c/số tận cung là 0 (dâu hiệu chia hết cho 2 và 5)
Bài 2: Nếu n = 0 => 5n - 1= 1 - 1 = 0 chia hết cho 4
Nếu n = 1 => 5n - 1 = 5 - 1 = 4 chia hết cho 3
Nếu n > 2 => 5n - 1 = (.....25) - 1 = (....24) có hai cs tận cùng là số chia hết cho 4 thì số đó chia hết cho 4
a) \(\overline{ab}+\overline{ba}=10a+b+10b+a=11a+11b=11.\left(a+b\right)\)
Vì 11⋮11 nên \(\overline{ab}+\overline{ba}\)⋮11
Ghi lại đề: \(A=3+3^2+...+3^{2020}\)
\(\Rightarrow A=\left(3+3^2+3^3+3^4\right)+...+\left(3^{2017}+3^{2018}+3^{2019}+3^{2020}\right)\\ A=3\left(1+3+3^2+3^3\right)+...+3^{2017}\left(1+3+3^2+3^3\right)\\ A=\left(1+3+3^2+3^3\right)\left(3+...+3^{2017}\right)\\ A=40\left(3+...+3^{2017}\right)⋮10\left(40⋮10\right)\)
a/ \(5^{2014}+5^{2013}-5^{2012}=5^{2012}\left(5^2+5-1\right)=5^{2012}.29⋮29\left(đpcm\right)\)
b/ \(7^{500}+7^{499}-7^{498}=7^{498}\left(7^2+7-1\right)=7^{498}.55⋮11\left(đpcm\right)\)
Chứng minh rằng :
a, 1033+ 8 chia hết cho 9 và chia hết cho 2
Vì 10 chia hết cho 2 và 8 chia hết cho 2
=> 1033 + 8 chia hết cho 2
b, 1033 +14 ko chia hết cho 3 và chỉ chia hết cho 2
1) A = 120a + 36b
=> A = 12.10.a + 12.3.b
=> A = 12.(10a+3b)
Do 12.(10a+3b) \(⋮\)12
nên 120a+36b \(⋮\)12
2) Gọi (2a+7b) là (1)
(4a+2b) là (2)
Xét (1), ta có: 2a+7b = 2.(2a+7b) = 4a + 14b (3)
Lấy (3) - (1), ta có: (4a+14b) - (4a+2b) = 12b \(⋮\)3
Hay 4a+2b chia hết cho 3
3) Gọi (a+b) là (1)
(a+3b) là (2)
Lấy (2) - (1), ta có: (a+3b) - (a+b) = 2b \(⋮\)2
Hay (a+3b) chia hết cho 2