\(7^{7^{7^{7^{7^7}}}}-7^{7^{7^7}}⋮10\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

làm gì có bài toán như thế nhỉ ? hại não quá ! nghĩ mãi k ra 

26 tháng 11 2017

bạn tham khảo về bài toán có chũ số tận cùng

AH
Akai Haruma
Giáo viên
28 tháng 5 2019

Lời giải:

Đặt cả biểu thức to là $P$

Với mọi số tự nhiên $n$, áp dụng định lý Fermat nhỏ:

\(n^7\equiv n\pmod 7\) \(\Leftrightarrow n^7-n\vdots 7(1)\)

\(n^7-n=n(n^6-1)=n(n-1)(n+1)(n^2+n+1)(n^2-n+1)\) có $n(n-1)(n+1)$ là tích 3 số nguyên liên tiếp nên $n(n-1)(n+1)\vdots 6$

\(\Rightarrow n^7-n\vdots 6(2)\)

Từ \((1);(2)\Rightarrow n^7-n\vdots 42\) hay \(n^7\equiv n\pmod {42}\) (do 6 và 7 nguyên tố cùng nhau)

Áp dụng tính chất trên vào bài toán:

\([(27n+5)^7+10]^7\equiv (27n+5)^7+10\equiv 27n+5+10\pmod {42}(*)\)

\([(10n+27)^7+5]^7\equiv (10n+27)^7+5\equiv 10n+27+5\pmod {42}(**)\)

\([(5n+10)^7+27]^7\equiv (5n+10)^7+27\equiv 5n+10+27\pmod {42}(***)\)

Cộng theo vế:
\(\Rightarrow P\equiv 27n+5+10+10n+27+5+5n+10+27\)

\(\equiv 42n+84\equiv 0\pmod {42}\)

Hay $P\vdots 42$

Ta có đpcm.

27 tháng 5 2019

Bạn thi chuyên KHTN à?

10 tháng 1 2020

ngu quá

10 tháng 1 2020

Ta có: \(a^6-1=\left(a^3+1\right)\left(a^3-1\right)\)

\(=\left(a+1\right)\left(a^2-a+1\right)\left(a-1\right)\left(a^2+a+1\right)\)

* a không chia hết cho 7 nên a có 6 dạng: 7k + 1; 7k + 2; 7k + 3; 7k + 4; 7k + 5; 7k + 6

+) a = 7k + 1

\(\Rightarrow\left(a+1\right)\left(a^2-a+1\right)\left(a-1\right)\left(a^2+a+1\right)\)

\(=\left(a+1\right)\left(a^2-a+1\right)\left(7k+1-1\right)\left(a^2+a+1\right)\)

\(=7k\left(a+1\right)\left(a^2-a+1\right)\left(a^2+a+1\right)⋮7\)hay \(a^6-1⋮7\)

+) a = 7k + 2

\(\Rightarrow a^2=\left(7k+2\right)^2=49k^2+28k+4\)

\(\Rightarrow a^2+a+1=\left(49k^2+28k+4+7k+2+1\right)\)

\(=49k^2+35k+7⋮7\)

Do đó \(\Rightarrow\left(a+1\right)\left(a^2-a+1\right)\left(a-1\right)\left(a^2+a+1\right)⋮7\)hay \(a^6-1⋮7\)

+) a = 7k + 3

\(\Rightarrow a^2=\left(7k+3\right)^2=49k^2+42k+9\)

\(\Rightarrow a^2+a+1=\left(49k^2+42k+9-7k-3+1\right)\)

\(=49k^2+35k+7⋮7\)

Do đó \(\Rightarrow\left(a+1\right)\left(a^2-a+1\right)\left(a-1\right)\left(a^2+a+1\right)⋮7\)hay \(a^6-1⋮7\)

+) a = 7k + 4

\(\Rightarrow a^2=\left(7k+4\right)^2=49k^2+56k+16\)

\(\Rightarrow a^2+a+1=\left(49k^2+56k+16+7k+4+1\right)\)

\(\Rightarrow a^2+a+1=\left(49k^2+63k+21\right)⋮7\)

Do đó \(\Rightarrow\left(a+1\right)\left(a^2-a+1\right)\left(a-1\right)\left(a^2+a+1\right)⋮7\)hay \(a^6-1⋮7\)

+) a = 7k + 5

\(\Rightarrow a^2=\left(7k+5\right)^2=49k^2+70k+25\)

\(\Rightarrow a^2-a+1=\left(49k^2+70k+25-7k-5+1\right)\)

\(=\left(49k^2+63k+21\right)⋮7\)

Do đó \(\Rightarrow\left(a+1\right)\left(a^2-a+1\right)\left(a-1\right)\left(a^2+a+1\right)⋮7\)hay \(a^6-1⋮7\)

+) a = 7k + 6

\(\Rightarrow a^2=\left(7k+6\right)^2=49k^2+84k+36\)

\(\Rightarrow a^2+a+1=\left(49k^2+84k+36+7k+5+1\right)\)

\(=49k^2+91k+42⋮7\)

Do đó \(\Rightarrow\left(a+1\right)\left(a^2-a+1\right)\left(a-1\right)\left(a^2+a+1\right)⋮7\)hay \(a^6-1⋮7\)

Vậy \(a^6-1⋮7\)với mọi a không là bội của 7

\(A=\sqrt[3]{7+5\sqrt{2}}+\sqrt[3]{7-5\sqrt{2}}\)

\(\Leftrightarrow A^3=7+5\sqrt{2}+7-5\sqrt{2}+3\cdot A\cdot\left(-1\right)\)

\(\Leftrightarrow A^3+3A-14=0\)

=>A=2

 

17 tháng 8 2017

c. Ta có: C+E=\(\sqrt{45+\sqrt{2009}}+\sqrt{45-\sqrt{2009}}=\sqrt{\left(\sqrt{\dfrac{49}{2}}+\sqrt{\dfrac{41}{2}}\right)^2}+\sqrt{\left(\sqrt{\dfrac{49}{2}}-\sqrt{\dfrac{41}{2}}\right)^2}=\dfrac{7}{\sqrt{2}}+\dfrac{\sqrt{41}}{\sqrt{2}}+\dfrac{7}{\sqrt{2}}-\dfrac{\sqrt{41}}{\sqrt{2}}=\dfrac{2.7}{\sqrt{2}}=7\sqrt{2}\)

=> đpcm.

20 tháng 7 2017

a. \(\dfrac{3\sqrt{7}+7\sqrt{3}}{\sqrt{21}}=\dfrac{\sqrt{21}\left(\sqrt{3}+\sqrt{7}\right)}{\sqrt{21}}=\sqrt{7}+\sqrt{3}\)

b. \(\dfrac{2\sqrt{5}-4\sqrt{10}}{3\sqrt{10}}=\dfrac{\sqrt{10}\left(\sqrt{2}-4\right)}{3\sqrt{10}}=\dfrac{-4+\sqrt{2}}{3}\)

c. \(\dfrac{3-\sqrt{7}}{3+\sqrt{7}}-\dfrac{3+\sqrt{7}}{3-\sqrt{7}}=\dfrac{\left(3-\sqrt{7}\right)^2}{9-7}-\dfrac{\left(3+\sqrt{7}\right)^2}{9-7}=\dfrac{\left(3-\sqrt{7}-3-\sqrt{7}\right)\left(3-\sqrt{7}+3+\sqrt{7}\right)}{2}=\dfrac{-2\sqrt{7}.6}{2}=-6\sqrt{7}\)