Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(3^{n+2}-2^{n+2}+3^n-2^n=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)=\left(3^n.3^2+3^n\right)-\left(2^n.2^2+2^n\right)\)
\(=\left[3^n.\left(3^2+1\right)\right]-\left[2^n.\left(2^2+1\right)\right]=\left(3^n.10\right)-\left(2^{n-1}.2.5\right)=\left(3^n.10\right)-\left(2^{n-1}.10\right)\)
Do: 3n . 10 chia hết cho 10 và 2n - 1 . 10 chia hết cho 10
=> ( 3n . 10 ) - ( 2n - 1 . 10 ) chia hết cho 10 => 3n + 2 - 2n + 2 + 3n - 2n chia hết cho 10
3n+2-2n+2+3n-2n=9.3n+3n-4.2n-2n=10.3n-5.2n
Mà 10.3n chia hết cho 10 (1)
Và:
2n chẵn nên 5.2n chia hết cho 10 (2)
Từ (1) và (2) suy ra 10.3n-5.2nchia hết cho 10 (đpcm)
Mình nghĩ đề là 33n+1
33n+2+5.33n+1
33n.32+5.33n.2
33n.9+33n.10
=>33n.19\(⋮\)19
=\(3^n\).\(3^2\)-\(2^n\).\(2^2\)+\(3^n\)-\(2^n\)
=\(^{3^n}\).9 - \(2^n\).4 +\(^{3^n}\)- \(2^n\)
=10 .\(3^n\)-5.\(2^n\)
=10.\(3^n\)-5.2.\(2^{n-1}\)
=10 .(\(3^n\)-\(2^n\) )
=> chia hết cho 10
Ta có: \(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=3^{n+2}+3^n-\left(2^{n+2}+2^n\right)\)
\(=3^n\cdot\left(3^2+1\right)-2^n\cdot\left(2^2+1\right)\)
\(=3^n\cdot10-2^n\cdot5\)
\(=3^n\cdot10-2^{n-1}\cdot2\cdot5\)
\(=3^n\cdot10-2^{n-1}\cdot10\)
\(=\left(3^n-2^{n-1}\right)\cdot10⋮10\left(dpcm\right)\)
Ta có: \(3^{n+2}-2^{n+2}+3^n-2^n=3^{n+2}+3^n-\left(2^{n+2}+2^n\right)\)
Thấy: \(3^{n+2}+3^n=3^n.2^2+3^n=9.3^n+3^n=3^n.\left(9+1\right)=3^n.10\)
\(\Rightarrow3^{n+2}+3^n⋮10\)\(\left(1\right)\)
\(2^{n+2}+2^n=4.2^n+2^n==2^n\left(4+1\right)=2^n.5=2.2^{n-1}.5=10.2^{n-1}\)
\(\Rightarrow2^{n+2}+2^n⋮10\)\(\left(2\right)\)
Từ (1) và (2) \(\Rightarrow3^{n+2}+2^n-\left(2^{n+2}+2^n\right)⋮10\Rightarrow3^{n+2}-2^{n+2}+3^n-2^n⋮10\) (đpcm)
k!
- Đề bài có sai không bạn , mình thử rồi mà k đc :))) bạn thử thử bằng n = 1 đi k ra đâu
có \(3^{n+3}-2.3^n+2^{n+5}-7.2^n\)=\(3^n.27-2.3^n+2^n.32-7.2^n\)=\(3^n\left(27-2\right)+2^n\left(32-7\right)\)
=\(25\left(3^n+2^n\right)⋮25\)
3n + 3 - 2 . 3n + 2n + 5 - 7 . 2n
= 3n . ( 33 - 2 ) + 2n . ( 25 - 7 )
= 3n . 25 + 2n . 25
= 25. ( 3n + 2n )
Vì 25 \(⋮\)25
Nên 25. ( 3n + 2n ) \(⋮\)25
Vậy 3n + 3 - 2 . 3n + 2n + 5 - 7 . 2n \(⋮\) 25
học tốt nhé bạn ^^
a) \(3^{n+2}-2^{n+2}+3^n-2^n\)
\(\Rightarrow\left(3^n\cdot3^2+3^n\right)-\left(2^n\cdot2^2+2^n\right)\)
\(\Rightarrow3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)
\(\Rightarrow3^n\cdot10-2^n\cdot5\)
\(\Rightarrow3^n\cdot10-2^{n-1}\cdot\left(2\cdot5\right)\)
\(\Rightarrow10\left(3^n-2^n\right)\) chia hết cho 10
b) \(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\)
\(\Rightarrow3^n\cdot3^3+3^n\cdot3+2^n\cdot2^3+2^n\cdot2^2\)
\(\Rightarrow3^n\left(3^3+3\right)+2^n\left(2^3+2^2\right)\)
\(\Rightarrow3^n\cdot30+2^n\cdot12\)
\(\Rightarrow3^n\cdot6\cdot5+2^n\cdot2\cdot6\)
\(\Rightarrow6\left(3^n\cdot5+2^n\cdot2\right)\) chia hết cho 6
Có: $6^n\cdot5=(2\cdot3)^n\cdot5=2^n\cdot3^n\cdot5$
$=(2\cdot5)\cdot2^{n-1}\cdot3^n=10\cdot2^{n-1}\cdot3^n$
Với $n$ nguyên dương $\Rightarrow n-1\ge 0$
Khi đó: $10\cdot2^{n-1}\cdot3^n\vdots10$
hay $6^n\cdot5\vdots10$ với $n$ nguyên dương.