Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài Làm
Gọi ƯCLN ( 4n + 1 và 6n + 2 ) bằng D
=> \(\hept{\begin{cases}4n+1⋮D\\6n+2⋮D\end{cases}\Rightarrow\hept{\begin{cases}12n+3⋮D\\12n+4⋮D\end{cases}}}\)
=> ( 12n + 4 ) - ( 12n + 3 ) \(⋮\)D
=> 1 \(⋮\)D
=> D = 1
Vì D = 1 nên 4n + 1 và 6n + 2 là số nguyên tố cùng nhau
Đặt ƯCLN ( 4n + 1 , 6n + 2 ) = d
=> \(\hept{\begin{cases}4n+1⋮d\\6n+2⋮d\end{cases}}\)=> \(\hept{\begin{cases}3.\left(4n+1\right)⋮d\\2.\left(6n+2\right)⋮d\end{cases}}\)=>\(\hept{\begin{cases}12n+3⋮d\\12n+4⋮d\end{cases}}\)=> ( 12n + 4 ) - ( 12n + 3 ) \(⋮d\)=> 1 \(⋮d\)
=> d thuộc Ư ( 1 ) = 1
ƯCLN ( 4n + 1 , 6n + 2 ) = 1
Vậy hai số 4n + 1 và 6n + 2 là hai số nguyên tố cùng nhau ( dpcm )
b, Gọi ƯCLN(2n+5;3n+7) = d ( \(d\in N\)*)
Ta có : 2n + 5 \(⋮\)d => 6n + 15 \(⋮\)d (1)
3n + 7 \(⋮\)d => 6n + 14 \(⋮\)d (2)
Lấy (1) - (2) ta được : \(6n+15-6n-14⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1\)
Vậy ta có đpcm
Gọi \(ƯCLN\left(2n+1,6n+5\right)\) là a
Theo đề ra , ta có :
\(\begin{cases}2n+1⋮a\\6n+5⋮a\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}6n+3⋮a\\6n+5⋮a\end{cases}\)
\(\Rightarrow\left(6n+5\right)-\left(6n+3\right)⋮a\)
\(\Rightarrow\left(6n+5-6n-3\right)⋮a\)
\(\Rightarrow2⋮a\) Vì : 2n + 1 và 6n + 5 là số lẻ \(\RightarrowƯCLN\left(2n+1,6n+5\right)=1\)
Vì : có ƯCLN = 1 => 2n + 1 và 6n + 5 là hai số nguyên tố cùng nhau
Vậy ...
a/GỌI ƯCLN CỦA A VÀ B LÀ D
ƯCLN (4n+3;5n+1)=D
suy ra {4n+3 chia hết cho D
{5n+1 chia hết cho D
suy ra{5(4n+3) chia hết cho D
{4(5n+1) chi hết cho D
suy ra 5(4n+3)-4(5n+1) chia hết cho D
suy ra (20n+3)-(20n+1) chia hết cho D
suy ra 3 - 1 chia hết cho D
suy ra 2 chia hết cho D
SUY RA D thuộc Ư(2)
suy ra D =2 (tm đề bài)
VẬY ƯCLN của (a;b) = 2
Gọi ƯCLN(4n+3; 5n+1) là d. Ta có:
4n+3 chia hết cho d => 20n+15 chia hết cho d
5n+1 chia hết cho d => 20n+4 chia hết cho d
=> 20n+15-(20n+4) chia hết cho d
=> 11 chia hết cho d
=> d thuộc Ư(11)
=> d thuộc {1; -1; 11; -11}
Mà 4n+3 và 5n+1 không nguyên tố cùng nhau
=> d = 11
=> ƯCLN(4n+3; 5n+1) = d
Chúc bạn học tốt
Giải:
Gọi \(d=UCLN\left(7n+10;5n+7\right)\)
Ta có:
\(7n+10⋮d\Rightarrow2\left(7n+10\right)⋮d\Rightarrow14n+20⋮d\)
\(5n+7⋮d\Rightarrow3\left(5n+7\right)⋮d\Rightarrow15n+21⋮d\)
\(\Rightarrow15n+21-14n-20⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\Rightarrow d=UCLN\left(7n+10;5n+7\right)=1\)
\(\Rightarrow\) 7n + 10 và 5n + 7 là 2 số nguyên tố cùng nhau
Gọi ƯCLN7n+10 ; 5n+7 là d
Theo đề ra ta có :
\(\begin{cases}7n+10⋮d\\5n+7⋮d\end{cases}\)
=> \(5\left(7n+10\right)-7\left(5n+7\right)⋮d\)
=> \(45n+50-\left(45n+49\right)⋮d\)
=> 1⋮ d
=> d = 1
Vậy (7n+10 ; 5n + 7 ) = 1
a) Ta có: (3n+2,5n+3)=(3n+2,2n+1)=(n+1,2n+1)=(n+1,n)=1(3n+2,5n+3)=(3n+2,2n+1)=(n+1,2n+1)=(n+1,n)=1.
Các câu sau chứng minh tương tự.
k nha pls
Đề bài sai :
Ta phải có \(6n-10>0\) và \(5-3n>0\)
\(\Rightarrow n>\frac{5}{3}\) và \(n<\frac{5}{3}\)
=> k có giá trị nào của n thoả mãn đề bài.
uk, đề bài thầy ra sai^^