Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$2^3\equiv -1\pmod 9$
$\Rightarrow 2^{6n}\equiv (-1)^{2n}\equiv 1\pmod 9$
$\Rightarrow 2^{6n+2}=2^{6n}.4\equiv 4\pmod 9$
$\Rightarrow 2^{6n+2}=9k+4$ với $k$ tự nhiên.
Vì $2^{6n+2}$ chẵn nên $9k$ chẵn $\Rightarrow k$ chẵn.
Khi đó:
\(2^{2^{6n+2}}+3=2^{9k+4}+3\)
$2^9\equiv -1\pmod {19}$
$\Rightarrow 2^{9k}\equiv (-1)^k\equiv 1\pmod {19}$ (do $k$ chẵn)
$\Rightarrow 2^{9k+4}\equiv 16\pmod {19}$
$\Rightarrow 2^{2^{6n+2}}+3=2^{9k+4}+3\equiv 16+3\equiv 19\equiv 0\pmod {19}$
Vậy $2^{2^{6n+2}}+3\vdots 19$
Câu 1:
a) n+4 chia hết cho n
suy ra 4 chia hết cho n(vì n chia hết cho n)
suy ra n thuộc Ư(4) {1;2;4}
Vậy n {1;2;4}
b) 3n+7 chia hết cho n
suy ra 7 chia hết cho n(vì 3n chia hết cho n)
suy ra n thuộc Ư(7) {1;7}
Vậy n {1;7}
c) 27-5n chia hết cho n
suy ra 27 chia hết cho n(vì 5n chia hết cho n)
suy ra n thuộc Ư(27) {1;3;9;27}
Vậy n {1;3;9;27}
d) n+6 chia hết cho n+2
suy ra (n+2)+4 chia hết cho n+2
suy ra 4 chia hết cho n+2(vì n+2 chia hết cho n+2)
suy ra n+2 thuộc Ư(4) {1;2;4}
n+2 bằng 1 (loại)
n+2 bằng 2 suy ra n bằng 0
n+2 bằng 4 suy ra n bằng 2
Vậy n {0;2}
e) 2n+3 chia hết cho n-2
suy ra 2(n-2)+7 chia hết cho n-2
suy ra 7 chia hết cho n-2(vì 2(n-2) chia hết cho n-2)
suy ra n-2 thuộc Ư(7) {1;7}
n-2 bằng 1 suy ra n bằng 3
n-2 bằng 7 suy ra n bằng 9
Vậy n {3;9}
dat A(n) = n^4+6n^3+11n^2+6n va A chia het cho 24 (1)
+) voi n = 1 => A = 24 chia het cho 24. vay (1) dung voi n = 1.(*)
+) gia su (1) dung voi n = k tuc la A(k) = k^4+6k^3+11k^2+6k chia het cho 24 (**).
+) gio ta phai chung minh (1) cung dung voi n = (k+1). that vay ta co:
A(k+1) = (k+1)^4+6(k+1)^3+11(k+1)^2+6(k+1) = (k+1)[(k+1)^3+6(k+1)^2+11(k+1)+6] =
= (k+1)(k+2)[(k+1)^2+5(k+1)+6] = (k+1)(k+2)(k+3)(k+4)
nhan thay A(k+1) la tich cua so tu nhien lien tiep=> A(k+1) chia het cho 24 (***)
tu (*) (**) va (***) => A(n) = n^4+6n^3+11n^2+6n chia het cho 24 voi moi n thuoc N(*).
Phân tích n^4+6n^3+n^2+6n thành: n(n+)(n+2)(n+3)
Nhận thấy:n,(n+),(n+2),(n+3) là 4 số nguyên liên tiếp với n nguyên
=> n(n+)(n+2)(n+3)chia hết cho 24
=>n^4+6n^3+n^2+6n chia hết cho 24
tick đúng cho mình nhé !
Đề sai rồi: bạn lấy n=0 thì 32+612=2176782345 không chia hết cho 11
a, Ta có:
\(3^{2n+1}+2^{n+2}=9^n.3+2^n.4\)
\(=9^n.3-2^n.3+2^n.7=3\left(9^n-2^n\right)+2^n.7\)
Ta lại có:
\(9^n-2^n⋮9-2=7;2n.7⋮7\)
\(\Rightarrow3^{2n+1}+2^{n+2}⋮7\left(dpcm\right)\)
bài này dễ
3n+3+3n+1+2n+3+2n+2
=3n.33+3n.3+2n.23+2n.22
=3n.(33+3)+2n.(23+22)
=3n.(27+3)+2n.(8+4)
=3n.30+2n.12
vì 3n.30 chia hết cho 6
2n.12 chia hết cho 6
=> 3n+3+3n+1+2n+3+2n+2 chia hết cho 6