Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt : \(A=\frac{1}{20.23}+\frac{1}{23.26}+\frac{1}{26.29}+...+\frac{1}{77.80}\)
\(\Rightarrow3A=\frac{3}{20.23}+\frac{3}{23.26}+\frac{3}{26.29}+...+\frac{3}{77.80}\)
\(\Rightarrow3A=\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+\frac{1}{26}-\frac{1}{29}+...+\frac{1}{77}-\frac{1}{80}\)
\(\Rightarrow3A=\frac{1}{20}+\left(\frac{1}{23}-\frac{1}{23}\right)+\left(\frac{1}{26}-\frac{1}{26}\right)+...+\left(\frac{1}{77}-\frac{1}{77}\right)-\frac{1}{80}\)
\(\Rightarrow3A=\frac{1}{20}-\frac{1}{80}\)
\(\Rightarrow3A=\frac{3}{80}\)
\(\Rightarrow A=\frac{3}{80}:3\)
\(\Rightarrow A=\frac{1}{80}\)
Vì 80 > 79 nên \(\frac{1}{80}< \frac{1}{79}\)hay \(A< \frac{1}{79}\)
~ Hok tốt ~
\(\frac{1}{20\cdot23}+\frac{1}{23\cdot26}+\frac{1}{26\cdot29}+...+\frac{1}{77\cdot80}\)
\(< \frac{1}{3}\left[\frac{3}{20\cdot23}+\frac{3}{23\cdot26}+\frac{3}{26\cdot29}+...+\frac{3}{77\cdot80}\right]\)
\(< \frac{1}{3}\left[\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+...+\frac{1}{77}-\frac{1}{80}\right]\)
\(< \frac{1}{3}\left[\frac{1}{20}-\frac{1}{80}\right]\)
\(< \frac{1}{3}\left[\frac{4}{80}-\frac{1}{80}\right]\)
\(< \frac{1}{3}\cdot\frac{3}{80}=\frac{1}{80}< \frac{1}{79}(đpcm)\)
1.
a.\(A=1+2^1+2^2+2^3+...+2^{2007}\)
\(2A=2+2^2+2^3+....+2^{2008}\)
b. \(A=\left(2+2^2+2^3+...+2^{2008}\right)-\left(1+2^1+2^2+..+2^{2007}\right)\)
\(=2^{2008}-1\) (bạn xem lại đề)
2.
\(A=1+3+3^1+3^2+...+3^7\)
a. \(2A=2+2.3+2.3^2+...+2.3^7\)
b.\(3A=3+3^2+3^3+...+3^8\)
\(2A=3^8-1\)
\(=>A=\dfrac{2^8-1}{2}\)
3
.\(B=1+3+3^2+..+3^{2006}\)
a. \(3B=3+3^2+3^3+...+3^{2007}\)
b. \(3B-B=2^{2007}-1\)
\(B=\dfrac{2^{2007}-1}{2}\)
4.
Sửa: \(C=1+4+4^2+4^3+4^4+4^5+4^6\)
a.\(4C=4+4^2+4^3+4^4+4^5+4^6+4^7\)
b.\(4C-C=4^7-1\)
\(C=\dfrac{4^7-1}{3}\)
5.
\(S=1+2+2^2+2^3+...+2^{2017}\)
\(2S=2+2^2+2^3+2^4+...+2^{2018}\)
\(S=2^{2018}-1\)
4:
a:Sửa đề: C=1+4+4^2+4^3+4^4+4^5+4^6
=>4*C=4+4^2+...+4^7
b: 4*C=4+4^2+...+4^7
C=1+4+...+4^6
=>3C=4^7-1
=>\(C=\dfrac{4^7-1}{3}\)
5:
2S=2+2^2+2^3+...+2^2018
=>2S-S=2^2018-1
=>S=2^2018-1
Ta có :
\(\frac{1}{20.23}+\frac{1}{23.26}+...+\frac{1}{77.80}\)
\(=\frac{1}{3}\left(\frac{3}{20.23}+\frac{3}{23.26}+...+\frac{3}{77.80}\right)\)
\(=\frac{1}{3}\left(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+...+\frac{1}{77}-\frac{1}{80}\right)\)
\(=\frac{1}{3}\left(\frac{1}{20}-\frac{1}{80}\right)\)
\(=\frac{1}{3}.\frac{3}{80}\left(\frac{3}{80}< 1\right)\)
\(\Leftrightarrow\frac{1}{20.23}+\frac{1}{23.26}+...+\frac{1}{77.80}< \frac{1}{3}\left(đpcm\right)\)
\(M=\frac{1}{20.23}+\frac{1}{23.26}+\frac{1}{26.29}+...+\frac{1}{77x80}\)
\(M=\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+\frac{1}{26}-\frac{1}{29}+...+\frac{1}{77}-\frac{1}{80}\)
\(M=\frac{1}{20}-\frac{1}{80}=\frac{3}{80}\)
\(\frac{3}{80}=\frac{3x9}{80x9}=\frac{27}{720};\frac{1}{9}=\frac{1x80}{9x80}=\frac{80}{720}\)
Vì \(\frac{27}{720}< \frac{80}{720}\Rightarrow\frac{3}{80}< \frac{1}{9}\Rightarrow M< \frac{1}{9}\)
#~Will~be~Pens~#
b) 36 : 3 2 + 3 2 . 2 3 -150
= 36 : 9 + 9 . 8 – 1 = 4 + 72 – 1 = 76 – 1 = 75
Ta có : \(\frac{3^2}{20\cdot23}+\frac{3^2}{23\cdot26}+...+\frac{3^2}{77\cdot80}=\frac{1}{3}\cdot\left(\frac{1}{20}-\frac{1}{80}\right)=\frac{1}{3}\cdot\frac{3}{80}=\frac{1}{80}< 1\) ( đpcm )