Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a,\(A=3+3^2+3^3+...+3^{2010}\)
\(=\left(3+3^2+3^3+3^4\right)+....+\left(3^{2007}+3^{2008}+3^{2009}+3^{2010}\right)\)
\(=3\left(1+3+3^2+3^3\right)+....+3^{2007}\left(1+3+3^2+3^3\right)\)
\(=3.40+...+3^{2007}.40\)
\(=40\left(3+3^5+...+3^{2007}\right)⋮40\)
Vì A chia hết cho 40 nên chữ số tận cùng của A là 0
b,\(A=3+3^2+3^3+...+3^{2010}\)
\(3A=3^2+3^3+...+3^{2011}\)
\(3A-A=\left(3^2+3^3+...+3^{2011}\right)-\left(3+3^2+3^3+...+3^{2010}\right)\)
\(2A=3^{2011}-3\)
\(2A+3=3^{2011}\)
Vậy 2A+3 là 1 lũy thừa của 3
\(=\left(3^1+3^2+3^3\right)+...+\left(3^{2008}+3^{2009}+3^{2010}\right)\)
\(=\left(3^1+3^2+3^3\right)+...+3^{2007}\left(3^1+3^2+3^3\right)\)
\(=39+...+3^{2007}.39=39\left(1+....+3^{2007}\right)\)
vì 39 chia hết cho 13 nên \(39\left(1+...+3^{2007}\right)\)chia hết cho 13
hay 3^1+3^2+3^3...+3^2009+3^2010 chia hết cho 13
Ta có: \(3^1+3^2+3^3+...+3^{2009}+3^{2010}\)
_____________________________________
Có (2010-1)/1+1=2010(số)
=\(\left(3^1+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{2008}+3^{2009}+3^{2010}\right)\)
___________________________________________________________________________
Có 2010 : 3 = 670( nhóm )
=\(3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{2008}\left(1+3+3^2\right)\)
=\(\left(1+3+3^2\right)\left(3+3^4+...+3^{2008}\right)\)
=\(13\left(3+3^4+....+3^{2008}\right)\)
Vì 13 chia hết cho 13 nên \(13\left(3+3^4+...+3^{2008}\right)\)chia hết cho 13
Hay \(3^1+3^2+3^3+...+2^{2009}+2^{2010}\)chia hết cho 13
Vậy \(3^1+3^2+3^3+...+3^{2009}+3^{2010}\)chia hết cho 13
Tick nha!!!
\(A=3^1+3^2+3^3+................+3^{2009}+3^{2010}\)
\(3A=3^2+3^3+3^4+..........+3^{2010}+3^{2011}\)
\(3A-A=3^{2011}-3^1\)
\(2A=\left(3^{2011}-3^1\right):2\)
Tick nha
a)Dễ ,bạn chỉ cần nhóm các số hạng thích hợp rồi rút thừa số chung ra là xong.Bạn tự làm
b)\(A=1+3+3^2+...+3^{2017}\)
\(3A=3+3^2+3^3+...+3^{2018}\)
\(3A-A=2A=3^{2018}-1\Rightarrow2A+1=3^{2018}\) (là một lũy thừa)
b) 59x + 46y = 2004
Vì 2004 là số chẵn, 46y là số chẵn
=> 59x là số chẵn => x là số chẵn, mà x là số nguyên tố => x = 2
=> 2.59 + 46y = 2004
=> 46y = 2004 - 118
=> 46y = 1886
=> y = 1886:46
=> y = 41
Vậy x = 2; y = 41
2) A = 1 - 3 + 32 - 33 + ......... + 32002 - 32003 + 32004
=> 3A = 3 - 32 + 33 - 34 + ........... + 32003 - 32004 + 32005
=> 3A + A = (3 - 32 + 33 - 34 + ........... + 32003 - 32004 + 32005) + (1 - 3 + 32 - 33 + ......... + 32002 - 32003 + 32004)
=> 4A = 32005 + 1
=> 4A - 1 = 32005 là luỹ thừa của 3
b: \(A=3\left(1+3+3^2\right)+...+3^{58}\left(1+3+3^2\right)\)
\(=13\left(3+...+3^{58}\right)⋮13\)
\(a,\Leftrightarrow2A=8+2^3+2^4+...+2^{21}\\ \Leftrightarrow2A-A=8+2^3+2^4+...+2^{21}-4-2^2-2^3-...-2^{20}\\ \Leftrightarrow A=2^{21}+8-4-2^2=2^{21}\left(đpcm\right)\\ b,A=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{58}+3^{59}+3^{60}\right)\\ A=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{58}\left(1+3+3^2\right)\\ A=\left(1+3+3^2\right)\left(3+3^4+...+3^{58}\right)\\ A=13\left(3+3^4+...+3^{58}\right)⋮13\)
(3^1+3^2+3^3) +(3^4+3^5+3^6)+.....+(3^2008+3^2009+3^2010)=3^1+(1+3^1+3^2)+3^4+(1+3^1+3^2)+.....+3^2008(1+3^2001+3^2002)=13 nhân (3+3^4+...+3^2008)chia hết cho 13
mk mới tham gia online math chưa chuyên nghệp lắm năm sau mk lên lớp 7.chào bạn