Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) n^2.(n+1)+2n.(n+1)
= (n+1).(n^2+2n)
= n.(n+1).(n+2) chia hết cho 6 ( do 3 số liên tiếp chia hết cho 6)
b) (2n-1)^3 - (2n-1)
= (2n-1).[(2n-1)^2 - 1]
= (2n-1).(2n-1-1).(2n-1+1)
= (2n-1).2.(n-1).2n
= 4.n.(n-1).(2n-1)
mà n.(n-1) là 2 số tự nhiên liên tiếp
=> n hoặc n - 1 sẽ chia hết cho 2
=> 4.n.(n-1) sẽ chia hết cho 4.2 = 8
=> 4.n.(n-1).(2n-1) chia hết cho 8
=> (2n-1)^3 - (2n-1) chia hết cho 8
Em chưa học làm dạng này , em làm thử thôi nhá, sai xin chỉ dạy thêm nha
2 . \(\dfrac{n^7+n^2+1}{n^8+n+1}=\dfrac{n^7-n+n^2+n+1}{n^8-n^2+n^2+n+1}\)
\(=\dfrac{n\left(n^6-1\right)+n^2+n+1}{n^2\left(n^6-1\right)+n^2+n+1}=\dfrac{n\left(n^3+1\right)\left(n^3-1\right)+n^2+n+1}{n^2\left(n^3+1\right)\left(n^3-1\right)+n^2+n+1}\)\(=\dfrac{n\left(n^3+1\right)\left(n-1\right)\left(n^2+n+1\right)+n^2+n+1}{n^2\left(n^3+1\right)\left(n-1\right)\left(n^2+n+1\right)+n^2+n+1}\)
\(=\dfrac{\left(n^2+n+1\right)\left[\left(n^4+n\right)\left(n-1\right)\right]}{\left(n^2+n+1\right)\left[\left(n^5+n^2\right)\left(n-1\right)+1\right]}\)
\(=\dfrac{n^5-n^4+n^2-n}{n^6-n^5+n^3-n^2+1}=\dfrac{n^4\left(n-1\right)+n\left(n-1\right)}{n^5\left(n-1\right)+n^2\left(n-1\right)+1}\)
\(=\dfrac{\left(n-1\right)\left(n^4+n\right)}{\left(n-1\right)\left(n^5+n^2\right)+1}\)
Vậy ,với mọi số nguyên dương n thì phân thức trên sẽ không tối giản
Bài 1:
\(=a^8+2a^4+1-a^4\)
\(=\left(a^4+1\right)^2-a^4\)
\(=\left(a^4-a^2+1\right)\left(a^4+a^2+1\right)\)
\(=\left(a^4-a^2+1\right)\left(a^4+2a^2+1-a^2\right)\)
\(=\left(a^4-a^2+1\right)\left(a^2+1-a\right)\left(a^2+1+a\right)\)
\(\left(2n+3\right)^2-25=\left(2n+3\right)^2-5^2\)
\(=\left(2n-2\right)\left(2n+8\right)\)
\(=4\left(n-1\right)\left(n+2\right)\)
Vì \(\left(n-1\right)\left(n+2\right)⋮2\)nên \(=4\left(n-1\right)\left(n+2\right)⋮8\)
\(\Rightarrow\left(2n+3\right)^2-25⋮8\)