K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 12 2018

Ta có:

2a(a+1) chắc chắn chia hết cho 2 và a2(a+1) cũng vậy nên tổng trên chia hết cho 2 (1)

 a có dạng: 3k;3k+1;3k+2 (k E N)

+) a=3k => tổng trên chia hết cho 3

+) a=3k+1 => a2(a+1) chia 3 dư 2 và: 2a(a+1) chia 3 dư 1

=> tổng trên chia hết cho 3 (2+1=3 chia hết cho 3)

+) a=3k+2=> a+1 chia hết cho 3 nên: tổng trên chia hết cho 3 (2)

Từ (1) và (2)=> tổng trên chia hết cho 2 và 3 mà: (2;3)=1=> a chia hết cho 2.3=6 (ĐPCM)

b, tương tự

5 tháng 12 2018

thôi shitbo ko biết đừng trả lời hộ mình 

a) \(a^2\left(a+1\right)+2a\left(a+1\right)\)

\(=\left(a+1\right)\left(a^2+2a\right)\)

\(=a\left(a+1\right)\left(a+2\right)\)

Vì a; a + 1 và a + 2 là 3 số liên tiếp nên :

+) chắc chắn có một số chia hết cho 2 (1)

+)chắc chắn có một số chia hết cho 3 (2)

Mà ƯC(2;3) = 1

Từ (1) và (2) => \(a\left(a+1\right)\left(a+2\right)⋮2\cdot3=6\left(đpcm\right)\)

10 tháng 10 2015

a^2(a+1)+2a(a+1)

=(a+1)(a^2+2a)

=a(a+1)(a+2)

đây là tích 3 số nguyên liên tiếp, mà trong đó thì chắc chắn có 1 số chia hết cho3, 1 số chia hết cho 2 nên tích đó chia hết cho 6.

a(2a-3)-2a(a+1) 

= 2a^2 - 3a - 2a^2 - 2a

= - 5a chia hết cho 5

x^2 + 2x + 2

=(x+1)^2 +1

(x+1)^2 là số dương; 1 là số dương nên "cái kết quả trên" lớn hơn 0

-x^2 + 4x - 5

= - (x^2 - 4x + 5)

= - (x - 2)^2 + 1

vậy kết quả trên bé hơn 0

 

 

29 tháng 1 2018

bài này mà gọi là bài lớp 8 hả còn dễ hơn bài lớp 6 em là hs lớp 6

27 tháng 7 2016

a) \(a^3-a=a\left(a^2-1\right)=a\left(a-1\right)\left(a+1\right)\)

Vì \(n;n+1;n-1\)là 3 số nguyên liên tiếp chia hết cho 6.

\(\Rightarrow a\left(a+1\right)\left(a-1\right)\)chia hết cho 6

Hay \(a^3-a\)chia hết cho 6 (với mọi \(a\in Z\))

b) \(ab.\left(a^2-b^2\right)\)

Nếu a hoặc b chia hết cho 6 \(\Rightarrow ab.\left(a^2-b^2\right)\)chia hết cho 6

Nếu  a và b không chia hết cho 6 mà \(a^2\)chia 6 dư 1(2;3;4;5....) và \(b^2\)chia 6 dư 1(2;3;4;5...) 

\(\Rightarrow a^2-b^2\)chia 6 dư 1 (2;3;4;5...)  - 1 (2;3;4;5...) = 0

thì \(ab.\left(a^2-b^2\right)\)chia hết cho 6.

a: \(a^3-a=a\left(a^2-1\right)=a\left(a-1\right)\left(a+1\right)\)

Vì a;a-1;a+1 là ba số nguyên liên tiếp

nên \(a\left(a-1\right)\left(a+1\right)⋮3!\)

hay \(a^3-a⋮6\)

b: \(ab\left(a^2-b^2\right)=a^3b-ab^3\)

\(=a^3b-ab+ab-ab^3\)

\(=b\left(a^3-a\right)+a\left(b-b^3\right)\)

Vì \(a^3-a⋮6\)

và \(b-b^3=-\left(b^3-b\right)⋮6\)

nên \(ab\left(a^2-b^2\right)⋮6\)

8 tháng 8 2016

1) A= 2a2b2+2a2c2+2b2c2-a^4-b^4-c^4

       = 2a2b2+2a2c2+2b2c2-(a^4+b^4+c^4)

       =  2a2b2+2a2c2+2b2c-[(a2+b2+c2)2+2a2b2+2a2c2+2b2c)

       = 2a2b2+2a2c2+2b2c2 -(a2+b2+c2)2-2a2b2-2a2c2-2b2c2

         = (a2+b2+c2)>0

8 tháng 8 2016

\(A=5n^3+15n^2+10n\)

\(=5n\left(n^2+2\times n\times\frac{3}{2}+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2+2\right)\)

\(=5n\left[\left(n+\frac{3}{2}\right)^2-\frac{1}{4}\right]\)

\(=5n\left[\left(n+\frac{3}{2}\right)^2-\left(\frac{1}{2}\right)^2\right]\)

\(=5n\left(n+\frac{3}{2}+\frac{1}{2}\right)\left(n+\frac{3}{2}-\frac{1}{2}\right)\)

\(=5n\left(n+2\right)\left(n+1\right)\)

Tích của 3 số nguyên liên tiếp chia hết cho 6

=> A vừa chia hết cho 6 vừa chia hết cho 5

=> A chia hết cho 30 (đpcm)