\(25^{100}-1\) chia hết cho 8

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2017

Ta có: 8+0+0+...+0+1=9 chia hết cho 9

=>8100-1 chia hết cho 9

Vậy 8100-1 chia hết cho 9

13 tháng 4 2017

bn Nguyễn minh tiệp làm sai rồi làm sao mà 8^100 =8000...0 đc

26 tháng 12 2017

1. \(A=2^{2016}-1\)

\(2\equiv-1\left(mod3\right)\\ \Rightarrow2^{2016}\equiv1\left(mod3\right)\\ \Rightarrow2^{2016}-1\equiv0\left(mod3\right)\\ \Rightarrow A⋮3\)

\(2^{2016}=\left(2^4\right)^{504}=16^{504}\)

16 chia 5 dư 1 nên 16^504 chia 5 dư 1

=> 16^504-1 chia hết cho 5

hay A chia hết cho 5

\(2^{2016}-1=\left(2^3\right)^{672}-1=8^{672}-1⋮7\)

lý luận TT trg hợp A chia hết cho 5

(3;5;7)=1 = > A chia hết cho 105

2;3;4 TT ạ !!

4 tháng 10 2015

Bài 78 :

Số có tận cùng là 1 khi nâng lên lũy thừa vẫn có tận cùng là 1

Ta có : A có 10 số hạng

Vậy A = (...1) + (...1) + .... + (..1) = (...0)

A có chữ số tận cùng là 0 nên A chia hết cho 5

4 tháng 10 2015

78/ \(A=11^9+11^8+11^7+...+11+1\)

\(\Rightarrow2A=11^{10}+11^9+11^8+11^7+...+11\)

\(\Rightarrow2A\text{-}A=\left(11^{10}+11^9+11^8+11^7+...+11\right)\text{-}\left(+11^9+11^8+11^7+...+11+1\right)\)

\(A=11^{10}\text{-}1\)

\(A=\left(...1\right)\text{-}1\Rightarrow A=\left(...0\right)\)tận cùng là 0 chia hết cho 5.

7 tháng 8 2018

a)  \(A=1+2+3^2+....+3^{11}\)

\(=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{10}+3^{11}\right)\)

\(=\left(1+3\right)+3^2\left(1+3\right)+....+3^{10}\left(1+3\right)\)

\(=\left(1+3\right)\left(1+3^2+...+3^{10}\right)\)

\(=4\left(1+3^2+...+3^{10}\right)\)\(⋮\)\(4\)

b)  \(B=16^5+2^{15}=\left(2^4\right)^5+2^{15}=2^{20}+2^{15}=2^{15}.\left(2^5+1\right)=2^{15}.33\)\(⋮\)\(33\)

c) \(C=10^{28}+8=1000...008\)(27 chữ số 0)

Nhận thấy:  tổng các chữ số của C chia hết cho 9   =>  C chia hết cho 9

                   3 chữ số tận cùng của C chia hết cho 8  =>  C chia hết cho 8

mà (8;9) = 1   =>  C chia hết cho 72

d) \(D=8^8+2^{20}=2^{24}+2^{20}=2^{20}\left(2^4+1\right)=2^{20}.17\)\(⋮\)\(17\)

7 tháng 10 2016

đầu tiên, bạn tính B=4^2004+4^2003+...+4^2+4+1 
Xét 4B = 4^2005+4^2004+...+4^2+4 
=> 4B-B = (4^2005+4^2004+...4^3+4^2+4) - (4^2004+4^2003+...+4^2+4+1) 
=> 3B = 4^2005 - 1 => B = (4^2005 - 1)/3 
=> A = 75 (4^2005 - 1)/3 +25 
= 25 (4^2005 -1) +25 
= 25 x 4 ^ 2005 
= 25 x 4 x 4 ^ 2004 = 100 x4 ^ 2004 

 

7 tháng 10 2016

SAI ĐỀ RỒI BẠN THÔNG CẢM

21 tháng 8 2018

Chúng tỏ rằng : 

a) M = 4^10 - 2^18 chia hết cho 3 

M = 4^10 - 2^18 

M = ( 2^2 )^10 - 2^18 

M = 2^20 - 2^18 

M = 2^18 . 2^2 - 2^18 . 1 

M = 2^18 . 4 - 2^18 . 1 

M = 2^18 . ( 4 - 1 ) 

M = 2^18 . 3 chia hết cho 3 

Vậy M chia hết cho 3 

hoi phuc tap voi ban neu ban chua hoc ve dong du

co 8^10 dong du voi 1 khi chia cho 9 =>8^100 dong du voi 1 khi chia 9

=>8^100 -1 chia het cho 9

Hỏi trên mạng về đồng dư bạn nhé

14 tháng 4 2017

uk cảm ơn bạn

17 tháng 2 2019

a, \(10^m-1⋮19,19⋮19\)

\(\Rightarrow\left(10^m-1\right)\left(10^m+1\right)+19⋮19\)

\(\Rightarrow10^{2m}-1+19⋮19\Rightarrow10^{2m}+18⋮19\)

27 tháng 3 2019

\(b,\)Ta có : \(3+3^2+3^3+3^4+...+3^{23}+3^{24}+3^{25}\)

\(=3+\left(3^2+3^3+3^4\right)+...+\left(3^{23}+3^{24}+3^{25}\right)\)

\(=3+3\left(3+3^2+3^3\right)+...+3^{22}\left(3+3^2+3^3\right)\)

\(=3+3.39+...+3^{22}.39\)

\(=3+39\left(3+...+3^{22}\right)\)

Suy ra : B chia 39 dư 3

Vậy : B không chia hết cho 39