K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a,Ta có :  \(1996\equiv1\left(mod5\right)\)

                \(\Rightarrow1996^{1996}\equiv1^{1996}\left(mod5\right)\)

                \(1991\equiv1\left(mod5\right)\)

                 \(\Rightarrow1991^{1991}\equiv1^{1991}\left(mod5\right)\)

                  \(\Rightarrow1996^{1996}-1991^{1991}\equiv1^{1996}-1^{1991}\left(mod5\right)\)

                  \(\Leftrightarrow1996^{1996}-1991^{1991}\equiv0\left(mod5\right)\)

Hay \(1996^{1996}-1991^{1991}⋮5\)

b,Ta có :     \(9^{1972}=\left(9^2\right)^{986}=81^{986}\)

                    \(7^{1972}=\left(7^4\right)^{493}=2401^{493}\)

Ta lại có :   \(81\equiv1\left(mod10\right)\)

                    \(\Rightarrow81^{986}\equiv1^{986}\left(mod10\right)\)

                     \(2401\equiv1\left(mod10\right)\)

                      \(\Rightarrow2401^{493}\equiv1^{493}\left(mod10\right)\)

\(\Rightarrow9^{1972}-7^{1972}=81^{986}-2401^{493}\equiv1^{986}-1^{493}\left(mod10\right)\)

 \(\Leftrightarrow9^{1972}-7^{1972}=81^{986}-2401^{493}\equiv0\left(mod10\right)\)

hay \(9^{1972}-7^{1972}⋮10.\)

c, Ta có : \(89\equiv1\left(mod2\right)\)

                 \(\Rightarrow89^{26}\equiv1^{26}\left(mod2\right)\)

                  \(45\equiv1\left(mod2\right)\)

                  \(\Rightarrow45^{21}\equiv1^{21}\left(mod2\right)\)

\(\Rightarrow89^{26}-45^{21}\equiv1^{26}-1^{21}\left(mod2\right)\)

\(\Rightarrow89^{26}-45^{21}\equiv0\left(mod2\right)\)

Hay \(89^{26}-45^{21}⋮0\)

27 tháng 5 2019

\(1996\equiv1\left(mod5\right)\Rightarrow1996^{1996}\equiv1\left(mod5\right)\)

\(1991\equiv1\left(mod5\right)\Rightarrow1991^{1991}\equiv1\left(mod5\right)\)

\(\Rightarrow1996^{1996}-1991^{1991}\equiv1-1=0\left(mod5\right)\Leftrightarrowđpcm.\)

\(9^{1972}=\left(9^2\right)^{986}=81^{986}\equiv1\left(mod10\right)\)

\(7^{1972}=\left(7^4\right)^{493}=2401^{493}\equiv1\left(mod10\right)\)

\(\Rightarrowđpcm.\)

3 tháng 6 2017

Mình chỉ làm được câu b )

1990 = ( 100 + 99 ) . 10

        = [ 100 + ( 100 - 1 ) ] . 10

        = 1000 + 1000 - 10

        = 2000 - 10

Số 19911991....1991000....000 chia hết cho 2000 ( áp dụng tính chất chia hết cho 1000 và 2 )

Tiếp đó thì số đó còn lại 19911991...1991000... chia hết cho 10 ( áp dụng tính chất chia hết cho 10 ) nên có tồn tại số có dạng 19911991 ... 000 ... 000 chia hết cho 1990

4 tháng 6 2017

cảm ơn bạn nhé Nguyen ngoc dat

28 tháng 10 2018

37375

21 tháng 11 2018

ngọc ơi giờ này tao nhớ chúng mày lắm

22 tháng 11 2021

a/ 

\(\overline{aba}=101.a+10b=98a+3a+7b+3b=\)

\(=\left(98a+7b\right)+3\left(a+b\right)\)

\(98a+7b⋮7;\left(a+b\right)⋮7\Rightarrow3\left(a+b\right)⋮7\)

\(\Rightarrow\overline{abc}=\left(98a+7b\right)+3\left(a+b\right)⋮7\)

b/ xem lại đề bài

1 tháng 10 2023

a, 10615 + 8 không chia hết cho 2 vì 8 ⋮ 2  nhưng 10615 không chia hết cho 2

10615 + 8 không chia hết cho 9 vì 1 + 6 + 1 + 5 + 8 = 21 không chia hết cho 9

1 tháng 10 2023

c,    B = 102010 -  4                                                                                   

       10 \(\equiv\) 1 (mod 3)

      102010 \(\equiv\) 12010 (mod 3)

      4          \(\equiv\) 1(mod 3)

⇒ 102010 - 4   \(\equiv\) 12010 - 1 (mod 3)

⇒ 102010 - 4   \(\equiv\)  0 (mod 3)

⇒ 102010 - 4 \(⋮\) 3

5 tháng 9 2016
bai nay mk lam dc 3 phan b ,c va d
5 tháng 9 2016

mk cung dang mac bai nay nen mong nhieu bn giup do chi nha !

20 tháng 12 2019

Đang định hỏi thì ....

16 tháng 2 2022

b) ab+ba

Ta có:ab=10a+b

          ba=10b+a

 ab+ba=10a+b+10b+a

           =  11a  + 11b

Ta thấy: 11a⋮11   ;   11b⋮11

=>ab+ba⋮11 (ĐPCM)