\(16^5+25^{15}⋮41\)

 \(9^{zn}+39⋮40\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 9 2019

Tham khảo:

7 tháng 9 2019

chính sát

4 tháng 3 2018

3^2n-9=(3^2)^n-9=9^n-9

Ta có:9 đồng dư với 1(mod 8)

\(\Rightarrow\)9^n đồng dư với 1(mod 8)

\(\Rightarrow\)9^n-9 đồng dư với -8(mod 8)

\(\Rightarrow\)9^n-9\(⋮\)8

Vậy 3^2n-9 chia hết cho 72 với mọi số nguyên dương n

4 tháng 3 2018

32n - 9 = (32) - 9 = 9n - 9

+) Thấy dấu hiệu chia hết cho 9

+) Ta có: 9 đồng dư với 1 (mod 8)

=> 9n đồng dư với 1 (mod 8)

=> 9- 9 đồng dư với -8 (mod 8)

=> 9- 9 đồng dư với 0 (mod 8)

=> 9- 9 chia hết cho 8

=> (8; 9) = 1 => 32n - 9 chia hết cho 72.

12 tháng 7 2016

a) \(85^2+75^2+65^2+55^2-45^2-35^2-25^2-15^2\)

\(=\left(85^2-15^2\right)+\left(75^2-25^2\right)+\left(65^2-35^2\right)+\left(55^2-45^2\right)\)

\(=\left(85-15\right)\left(85+15\right)+\left(75-25\right)\left(75+25\right)+\left(65-35\right)\left(65+35\right)+\left(55-45\right)\left(55+45\right)\)

\(=70.100+50.100+30.100+10.100\)

\(=7000+5000+3000+1000\)

\(=16000\)

12 tháng 7 2016

b) \(\frac{135^2+130.135+65^2}{135^2-65^2}\)

\(=\frac{135^2+2.60.135+65^2}{135^2-65^2}\)

\(=\frac{\left(135+65\right)^2}{\left(135-65\right)^2}\)

\(=\frac{200^2}{70^2}\) \(=\frac{200}{70}=\frac{20}{7}\)

22 tháng 2 2017

A ; Ta có : góc ADB=góc AEC=90 độ( đề cho) 

                góc BAC ( chung)

  vậy tam giác ABD đồng dạnh với tam giác ACE ( góc - góc)

B; Xét tam giác EHB và tam giác BCH có:

  góc CBH = góc BEH=90 độ

    Theo phần a ta lại có góc : EBH=ACE( định lí ta/lét)

        vậy suy ra tam giác EHB đồng dạng với tam giác DHC ( góc - góc)

  dựa theo 2 tam giác đồng dạng ta có tỉ lệ:

           EH/HD=BH/HC ( Ta -lét)

          EH*HC=BH*HD( ĐPCM)

 C; Theo phần a ta có :

 tam giác ABD đồng dạng với tam giác ACE:

suy ra : AB/AD=EA/AC( theo định lí tam giác đồng dạng )

 góc A chung

 vậy tam giác AED đồng dạng với tam giác ABC ( cạnh -góc -cạnh)

     

20 tháng 4 2017

Ta có :\(\dfrac{x+3}{x-2}< 5\) ; ĐKXĐ:x\(\ne\)2

\(\dfrac{x+3}{x-2}< \dfrac{5\left(x-5\right)}{x-2}\)\(\Leftrightarrow\)x+3<5x-25\(\Leftrightarrow\)x-5x<-3-25\(\Leftrightarrow\)-4x<-28

\(\Leftrightarrow\)-4x:(-4)>-28:(-4)\(\Leftrightarrow\)x>4

Vậy tập nghiệm của bất PT là S={x|x>4}

20 tháng 4 2017

Chứng minh chứ k phải giải bpt đâu bạn :) mà mình cũng làm đc rồi :) cảm ơn nhé