Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Tìm \(x\):
a) \(\dfrac{x}{5}=\dfrac{5}{6}+\dfrac{-19}{30}\)
\(\dfrac{x}{5}=\dfrac{1}{5}\)
\(\Rightarrow x=1\)
b) \(\dfrac{-5}{6}-x=\dfrac{7}{12}-\dfrac{1}{3}.x\)
\(\dfrac{-5}{6}-\dfrac{7}{12}=x-\dfrac{1}{3}.x\)
\(x-\dfrac{1}{3}.x=\dfrac{-17}{12}\)
\(\dfrac{2}{3}.x=\dfrac{-17}{12}\)
\(x=\dfrac{-17}{12}:\dfrac{2}{3}\)
\(x=\dfrac{-17}{8}\)
c) \(2016^3.2016^x=2016^8\)
\(2016^x=2016^8:2016^3\)
\(2016^x=2016^{8-3}\)
\(2016^x=2016^5\)
\(\Rightarrow x=5\)
d) \(\left(x+\dfrac{3}{4}\right):\dfrac{5}{2}=3\dfrac{1}{2}\)
\(\left(x+\dfrac{3}{4}\right):\dfrac{5}{2}=\dfrac{7}{2}\)
\(\left(x+\dfrac{3}{4}\right)=\dfrac{7}{2}.\dfrac{5}{2}\)
\(x+\dfrac{3}{4}=\dfrac{35}{4}\)
\(x=\dfrac{35}{4}-\dfrac{3}{4}\)
\(x=\dfrac{32}{4}=8\)
e) \(\left(2,8.x-2^5\right):\dfrac{2}{3}=3^2\)
\(\left(2,8.x-2^5\right)=9.\dfrac{2}{3}\)
\(2,8.x-2^5=6\)
\(2,8.x=6+32\)
\(2,8.x=38\)
\(x=38:2,8\)
\(x=\dfrac{95}{7}\)
f) \(\dfrac{4}{7}.x-\dfrac{2}{3}=\dfrac{2}{5}\)
\(\dfrac{4}{7}.x=\dfrac{2}{5}+\dfrac{2}{3}\)
\(\dfrac{4}{7}.x=\dfrac{16}{15}\)
\(x=\dfrac{16}{15}:\dfrac{4}{7}\)
\(x=\dfrac{28}{15}\)
g) \(\left(\dfrac{3x}{7}+1\right):\left(-4\right)=\dfrac{-1}{28}\)
\(\left(\dfrac{3x}{7}+1\right)=\dfrac{-1}{28}.\left(-4\right)\)
\(\dfrac{3x}{7}+1=\dfrac{1}{7}\)
\(\dfrac{3x}{7}=\dfrac{1}{7}-1\)
\(\dfrac{3x}{7}=\dfrac{-6}{7}\)
\(\Rightarrow3x=-6\)
\(x=\left(-6\right):3\)
\(x=-2\)
2. Thực hiện phép tính:
a) \(\dfrac{1}{2}+\dfrac{1}{2}.\dfrac{2}{3}-\dfrac{1}{3}:\dfrac{3}{4}+1\dfrac{4}{5}\)
\(=\dfrac{1}{2}.\left(\dfrac{2}{3}+1\right)-\dfrac{1}{3}:\dfrac{3}{4}+\dfrac{9}{5}\)
\(=\dfrac{1}{2}.\dfrac{5}{3}-\dfrac{1}{3}:\dfrac{3}{4}+\dfrac{9}{5}\)
\(=\dfrac{5}{6}-\dfrac{4}{9}+\dfrac{9}{5}\)
\(=\dfrac{7}{18}+\dfrac{9}{5}\)
\(=\dfrac{197}{90}\)
b) \(\dfrac{7.5^2-7^2}{7.24+21}\)
\(=\dfrac{7.25-7.7}{7.24+7.3}\)
\(=\dfrac{7.\left(25-7\right)}{7.\left(24+3\right)}\)
\(=\dfrac{7.18}{7.27}\)
\(=\dfrac{2}{3}\)
c) \(\dfrac{2}{3}+\dfrac{1}{3}.\left(\dfrac{-4}{9}+\dfrac{5}{6}\right):\dfrac{7}{12}\)
\(=\dfrac{2}{3}+\dfrac{1}{3}.\dfrac{7}{18}:\dfrac{7}{12}\)
\(=\dfrac{2}{3}+\dfrac{7}{54}:\dfrac{7}{12}\)
\(=\dfrac{2}{3}+\dfrac{2}{9}\)
\(=\dfrac{8}{9}\)
Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2016^2}\) ta có :
\(A>\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2016.2017}\)
\(A>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2016}-\frac{1}{2017}\)
\(A>\frac{1}{2}-\frac{1}{2017}\)
\(A>\frac{2015}{4034}\) \(\left(1\right)\)
Lại có :
\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2015.2016}\)
\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}\)
\(A< 1-\frac{1}{2016}\)
\(A< \frac{2015}{2016}\) \(\left(2\right)\)
Từ (1) và (2) suy ra : \(\frac{2015}{4034}< A< \frac{2015}{2016}\) ( đpcm )
Vậy \(\frac{2015}{4034}< \frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2016^2}< \frac{2015}{2016}\)
Chúc bạn học tốt ~
a)
\(3\dfrac{14}{19}+\dfrac{13}{17}+\dfrac{35}{43}+6\dfrac{5}{19}+\dfrac{8}{43}\\ =\left(3\dfrac{14}{19}+6\dfrac{5}{19}\right)+\left(\dfrac{35}{43}+\dfrac{8}{43}\right)+\dfrac{13}{17}\\ =10+1+\dfrac{13}{17}\\ =11\dfrac{13}{17}\)
b)
\(\dfrac{-5}{7}\cdot\dfrac{2}{11}+\dfrac{-5}{7}\cdot\dfrac{9}{11}+1\dfrac{5}{7}\\ =\dfrac{-5}{7}\cdot\left(\dfrac{2}{11}+\dfrac{9}{11}\right)+1\dfrac{5}{7}\\ =\dfrac{-5}{7}\cdot1+1\dfrac{5}{7}\\ =\dfrac{-5}{7}+1\dfrac{5}{7}\\ =1\)
a) \(3\dfrac{14}{19}+\dfrac{13}{17}+\dfrac{35}{43}+6\dfrac{5}{19}+\dfrac{8}{43}\)
\(=\left(3\dfrac{14}{19}+6\dfrac{5}{19}\right)+\left(\dfrac{35}{43}+\dfrac{8}{43}\right)+\dfrac{13}{17}\)
\(=\left[\left(3+6\right)+\left(\dfrac{14}{19}+\dfrac{5}{19}\right)\right]+1+\dfrac{13}{17}\)
\(=\left[9+1\right]+1+\dfrac{13}{17}\)
\(=10+1+\dfrac{13}{17}\)
\(=11+\dfrac{13}{17}\)
\(=\dfrac{187}{17}+\dfrac{13}{17}\)
\(=\dfrac{200}{17}\)
b) \(\dfrac{-5}{7}.\dfrac{2}{11}+\dfrac{-5}{7}.\dfrac{9}{11}+1\dfrac{5}{7}\)
\(=\dfrac{-5}{7}.\left(\dfrac{2}{11}+\dfrac{9}{11}\right)+\dfrac{12}{7}\)
\(=\dfrac{-5}{7}.1+\dfrac{12}{7}\)
\(=\dfrac{-5}{7}+\dfrac{12}{7}\)
\(=\dfrac{7}{7}\)
\(=1\)
c) \(11\dfrac{3}{13}-\left(2\dfrac{4}{7}+5\dfrac{3}{13}\right)\)
= \(11\dfrac{3}{13}-2\dfrac{4}{7}-5\dfrac{3}{13}\)
\(=\left(11\dfrac{3}{13}-5\dfrac{3}{13}\right)-2\dfrac{4}{7}\)
\(=\left[\left(11-5\right)+\left(\dfrac{3}{13}-\dfrac{3}{13}\right)\right]-\dfrac{18}{7}\)
\(=\left[6+0\right]-\dfrac{18}{7}\)
\(=6-\dfrac{18}{7}\)
\(=\dfrac{42}{7}-\dfrac{18}{7}\)
\(=\dfrac{24}{7}\)
d) \(\dfrac{2}{7}.5\dfrac{1}{4}-\dfrac{2}{7}.3\dfrac{1}{4}\)
\(=\dfrac{2}{7}.\left(5\dfrac{1}{4}-3\dfrac{1}{4}\right)\)
\(=\dfrac{2}{7}.\left[\left(5-3\right)+\left(\dfrac{1}{4}-\dfrac{1}{4}\right)\right]\)
\(=\dfrac{2}{7}.\left[2+0\right]\)
\(=\dfrac{2}{7}.2\)
= \(\dfrac{4}{7}\)
\(A=\dfrac{1}{3}\cdot\dfrac{4}{5}+\dfrac{1}{3}\cdot\dfrac{6}{5}+\dfrac{2}{3}\\ =\dfrac{1}{3}\cdot\left(\dfrac{4}{5}+\dfrac{6}{5}\right)+\dfrac{2}{3}\\ =\dfrac{1\cdot2}{3}+\dfrac{2}{3}\\ =\dfrac{2}{3}+\dfrac{2}{3}\\ =\dfrac{4}{3}\)
B =\(\dfrac{-5}{6}.\dfrac{4}{19}+\dfrac{-7}{12}.\dfrac{4}{19}\)-\(\dfrac{40}{57}\)
=\(\dfrac{4}{19}.\left[\dfrac{-5}{6}+\dfrac{-7}{12}\right]-\dfrac{40}{57}\)
=\(\dfrac{4}{19}.\left[\dfrac{-10}{12}+\dfrac{-7}{12}\right]-\dfrac{40}{57}\)
=\(\dfrac{4}{19}.\dfrac{-17}{12}-\dfrac{40}{57}\)
=\(\dfrac{-17}{57}\)-\(\dfrac{40}{57}\)
=\(\dfrac{-17}{57}+\dfrac{-40}{57}\)
=\(\dfrac{-57}{57}=-1\)
1. \(A=2^{2016}-1\)
\(2\equiv-1\left(mod3\right)\\ \Rightarrow2^{2016}\equiv1\left(mod3\right)\\ \Rightarrow2^{2016}-1\equiv0\left(mod3\right)\\ \Rightarrow A⋮3\)
\(2^{2016}=\left(2^4\right)^{504}=16^{504}\)
16 chia 5 dư 1 nên 16^504 chia 5 dư 1
=> 16^504-1 chia hết cho 5
hay A chia hết cho 5
\(2^{2016}-1=\left(2^3\right)^{672}-1=8^{672}-1⋮7\)
lý luận TT trg hợp A chia hết cho 5
(3;5;7)=1 = > A chia hết cho 105
2;3;4 TT ạ !!
Bài 1:
a) Ta có: \(\frac{3}{5}+\frac{4}{15}\)
\(=\frac{9}{15}+\frac{4}{15}\)
\(=\frac{13}{15}\)
b) Ta có: \(\frac{-3}{5}+\frac{5}{7}\)
\(=\frac{-21}{35}+\frac{25}{35}=\frac{4}{35}\)
c) Ta có: \(\frac{5}{6}:\frac{-7}{12}\)
\(=\frac{5}{6}\cdot\frac{-12}{7}=\frac{-60}{42}=\frac{-10}{7}\)
d) Ta có: \(\frac{-21}{24}:\frac{-14}{8}\)
\(=\frac{-7}{8}:\frac{-7}{4}\)
\(=\frac{-7}{8}\cdot\frac{4}{-7}=\frac{4}{8}=\frac{1}{2}\)
e) Ta có: \(\frac{-3}{5}\cdot\frac{5}{7}+\frac{-3}{5}\cdot\frac{3}{7}+\frac{-3}{5}\cdot\frac{6}{7}\)
\(=\frac{-3}{5}\left(\frac{5}{7}+\frac{3}{7}+\frac{6}{7}\right)\)
\(=-\frac{3}{5}\cdot2=\frac{-6}{5}\)
f) Ta có: \(\frac{1}{3}\cdot\frac{4}{5}+\frac{1}{3}\cdot\frac{6}{5}-\frac{4}{3}\)
\(=\frac{1}{3}\cdot\frac{4}{5}+\frac{1}{3}\cdot\frac{6}{5}-\frac{1}{3}\cdot4\)
\(=\frac{1}{3}\left(\frac{4}{5}+\frac{6}{5}-4\right)\)
\(=\frac{1}{3}\cdot\left(-2\right)=\frac{-2}{3}\)
g) Ta có: \(\frac{4}{19}\cdot\frac{-3}{7}+\frac{-3}{7}\cdot\frac{5}{19}+\frac{5}{7}\)
\(=\frac{4}{19}\cdot\frac{-3}{7}+\frac{5}{19}\cdot\frac{-3}{7}+\frac{-3}{7}\cdot\frac{5}{-3}\)
\(=-\frac{3}{7}\left(\frac{4}{19}+\frac{5}{19}+\frac{-5}{3}\right)\)
\(=\frac{-3}{7}\cdot\left(\frac{27}{57}+\frac{-95}{57}\right)\)
\(=\frac{-3}{7}\cdot\frac{-68}{57}=\frac{68}{133}\)
h) Ta có: \(\frac{5}{9}\cdot\frac{7}{13}+\frac{5}{9}\cdot\frac{9}{13}-\frac{5}{9}\cdot\frac{3}{13}\)
\(=\frac{5}{9}\left(\frac{7}{13}+\frac{9}{13}-\frac{5}{13}\right)\)
\(=\frac{5}{9}\)
Bài 1:
a) Cho A = 1+14+...+142014
=> 14A = 14 + 142 +...+142015
=> 14A - A = 142015 - 1
13A = 142015 - 1
mà 13 A chia hết cho 13
=> đpcm
b) làm tương tự
c) 1+3+32 +...+32015 ( có 2016 số hạng)
= (1+3+32 +33) + ...+ (32012 + 32013 +32014 +32015)
= 40 + ...+ 32012.(1+3+32+33)
...
Bài 2:
N = 7+72 + 73 +...+ 7n
=> 7N = 72 + 73 +74 +...+ 7n+1
=> \(6N=7^{n+1}-7\)
Thay vào biểu thức
=> 7n+1 -7 + 7 = 22016
7n+1 = 22016
...