K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
PN
2
Các câu hỏi dưới đây có thể giống với câu hỏi trên
HG
1
VD
0
NH
2
24 tháng 6 2015
122n+1+112+n=144n.12+11n.121
144 đồng dư với 11(mod 133)
=>144n đồng dư với 11n(mod 133)
=>144n.12+11n.121 đồng dư với 11n.12+11n.121
=11n.133 đồng dư với 0(mod 133)
=>122n+1 + 11n+2 với 0(mod 133)
=>122n+1+11n+2 chia hết cho 133
=>đpcm
24 tháng 6 2015
122n+1-11n+2 chia hết cho 133. Đề bài sai. VD n=1 thì 114 ko chia hết cho 133
LE
0
TL
0
NT
1
23 tháng 5 2022
a: \(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)
\(=n^3+2n^2+3n^2+6n-n-2+n^3+2\)
\(=5n^2+5n=5\left(n^2+n\right)⋮5\)
b: \(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)\)
\(=6n^2+30n+n+5-6n^2+3n-10n+5\)
\(=24n+10⋮2\)
d: \(=\left(n+1\right)\left(n^2+2n\right)\)
\(=n\left(n+1\right)\left(n+2\right)⋮6\)
\(A=11^{n+2}+12^{2n+1}\)
\(=11^n.121+12^{2n}.12\)
\(=11^n.\left(133-12\right)+144^n.12\)
\(=11^n.\left(133-12\right)+\left(133+11\right)^n.12\)
Ta có : \(\left(133+11\right)^n=133^n+133^{n-1}.11^1+...+133.11^{n-1}+11^n\)
\(133^n+133^{n-1}.11^1+...+133.11^{n-1}⋮133\)( vì mỗi số hạng đều chứa thừa số 133)
Ta ký hiệu số chia hết cho 133 là \(B\left(133\right)\)
Do đó \(\left(133+11\right)^n=B\left(133\right)+11^n\)
\(\Rightarrow A=11^n.133-11^n.12+\left[B\left(133\right)+11^n\right].12\)
\(=B\left(133\right)-11^n.12+B\left(133\right)+11^n.12\)
\(=B\left(133\right)\)
Vậy ...
giải giúp em với mấy thánh