Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1) VP= \frac{1}{n}-\frac{1}{n+1}\)\(= \frac{n+1}{n(n+1)}-\frac{n}{n(n+1)}\)\(= \frac{n+1-n}{n(n+1)}\)\(= \frac{1}{n(n+1)}\)\(= VT\)
2) \(VP= \frac{1}{n+1}-\frac{1}{(n+1)(n+2)}= \frac{(n+2)}{n(n+1)(n+2)}-\frac{n}{n(n+1)(n+2)}\)\(= \frac{n+2-n}{n(n+1)(n+2)}= \frac{2}{n(n+1)(n+2)}=VT\)
3) \(VP= \frac{1}{n(n+1)(n+2)}-\frac{1}{(n+1)(n+2)(n+3)}=\frac{n+3}{n(n+1)(n+2)(n+3)}-\frac{n}{n(n+1)(n+2)(n+3)}\)\(= \frac{n+3-n}{n(n+1)(n+2)(n+3)}=\frac{3}{n(n+1)(n+2)(n+3)(n+4)}=VT\)
Những ý sau làm tương tự, thế mà chẳng thèm mở mồm ra hỏi bạn :))
2.a)n^5+1⋮n^3+1
⇒n^2.(n^3+1)-n^2+1⋮n^3+1
⇒1⋮n^3+1
⇒n^3+1ϵƯ(1)={1}
ta có :n^3+1=1
n^3=0
n=0
Vậy n=0
b)n^5+1⋮n^3+1
Vẫn làm y như bài trên nhưng vì nϵZ⇒n=0
Bữa sau giải bài 3 mình buồn ngủ quá!!!!!!!!
Lời giải:
\(M=\frac{1.2.3.4.5.6.7...(2n-1)}{2.4.6...(2n-2).(n+1)(n+2)....2n}=\frac{(2n-1)!}{2.1.2.2.2.3...2(n-1).(n+1).(n+2)...2n}\)
\(=\frac{(2n-1)!}{2^{n-1}.1.2...(n-1).(n+1).(n+2)....2n}=\frac{(2n-1)!}{2^{n-1}.1.2...(n-1).n(n+1)..(2n-1).2}\)
\(=\frac{(2n-1)!}{2^{n-1}.(2n-1)!.2}=\frac{1}{2^{n-1}.2}<\frac{1}{2^{n-1}}\)
Ta có đpcm.
6/ \(\frac{2n-4}{n}=\frac{2n}{n}-\frac{4}{n}\) \(=2-\frac{4}{n}\)
Để 2n - 4 chia hết cho n thì 4 chia hết cho n
\(\Rightarrow\) n = 1; n = 2; n = 4
7/ \(\frac{35+12n}{n}=\frac{35}{n}+\frac{12n}{n}=\frac{35}{n}+12\)
Để 35 + 12n chia hết cho n thì 35 chia hết cho n
\(\Rightarrow\) n = 1; n = 5; n = 7; n = 35
1/ Để 7 \(⋮\) n (n \(\in N\)) thì n = 1; n = 7
2/ Để 7 \(⋮\) \(\left(n-1\right)\) thì \(n-1=1;n-1=-1;n-1=7;n-1=-7\)
*) \(n-1=1\)
n = 1 + 1
n = 2 (thỏa mãn n là số tự nhiên)
*) \(n-1=-1\)
\(n=-1+1\)
n = 0 (thỏa mãn n là số tự nhiên)
*) \(n-1=7\)
n = 7 + 1
n = 8 (thỏa mãn n là số tự nhiên)
*) \(n-1=-7\)
\(n=-7+1\)
\(n=-6\) (không thỏa mãn n là số tự nhiên)
Vậy n = 8; n = 2; n = 0
Tính các giới hạn sau:
a) lim n^3 +2n^2 -n+1
b) lim n^3 -2n^5 -3n-9
c) lim n^3 -2n/ 3n^2 +n-2
d) lim 3n -2n^4/ 5n^2 -n+12
e) lim (căn 2n^2 +3 - căn n^2 +1)
f) lim căn (4n^2-3n). -2n
a)(2n + 6) ⋮ (2n - 1)
Do đó ta có (2n + 6) = (2n - 1) + 7
Nên 7 ⋮ 2n - 1
Vậy 2n - 1 ∈ Ư(7) = {-1; 1; -7; 7}
Ta có bảng sau :
2n - 1 | -1 | 1 | -7 | 7 |
2n | 0 | 2 | -6 | 8 |
n | 0 | 1 | -3 | 4 |
➤ Vậy n ∈ {0; 1; -3; 4}
b)(3n + 7) ⋮ (n - 2)
(3n + 7) ⋮ 3(n - 2)
Do đó ta có (3n + 7) = 3(n - 2) + 13
Nên 13 ⋮ n - 2
Vậy n - 2 ∈ Ư(13) = {-1; 1; -13; 13}
Ta có bảng sau :
n - 2 | -1 | 1 | -13 | 13 |
n | 1 | 3 | -11 | 15 |
➤ Vậy n ∈ {1; 3; -11; 15}
c)(n + 7) ⋮ (n - 3)
Do đó ta có (n + 7) = (n - 3) + 10
Nên 10 ⋮ n - 3
Vậy n - 3 ∈ Ư(10) = {-1; 1; -2; 2; -5; 5; -10; 10}
Ta có bảng sau :
n - 3 | -1 | 1 | -2 | 2 | -5 | 5 | -10 | 10 |
n | 2 | 4 | 1 | 5 | -2 | 8 | -7 | 13 |
➤ Vậy n ∈ {2; 4; 1; 5; -2; 8; -7; 13}
d)(2n + 16) ⋮ (n + 1)
(2n + 16) ⋮ 2(n + 1)
Do đó ta có (2n + 16) = 2(n + 1) + 14
Nên 14 ⋮ n + 1
Vậy n + 1 ∈ Ư(14) = {-1; 1; -2; 2; -7; 7; -14; 14}
Ta có bảng sau :
n + 1 | -1 | 1 | -2 | 2 | -7 | 7 | -14 | 14 |
n | -2 | 0 | -3 | 1 | -8 | 6 | -15 | 13 |
➤ Vậy n ∈ {-2; 0; -3; 1; -8; 6; -15; 13}
e)(2n + 3) ⋮ n
2n + 3 ⋮ 2(n + 0)
Do đó ta có 2n + 3 = n + 3
Nên 3 ⋮ n
Vậy n ∈ Ư(3) = {-1; 1; -3; 3}
➤ Vậy n ∈ {-1; 1; -3; 3}
f)(5n + 12) ⋮ (n - 3)
(5n + 12) ⋮ 5(n - 3)
Do đó ta có (5n + 12) = 5(n - 3) + 27
Nên 27 ⋮ n - 3
Vậy n - 3 ∈ Ư(27) = {-1; 1; -3; 3; -9; 9; -27; 27}
Ta có bảng sau :
n - 3 | -1 | 1 | -3 | 3 | -9 | 9 | -27 | 27 |
n | 2 | 4 | 0 | 6 | -6 | 12 | -24 | 30 |
➤ Vậy n ∈ {2; 4; 0; 6; -6; 12; -24; 30}
( Tự tính nhá...các câu na ná nhau... )
\(a)\dfrac{7}{3n-1}\) là số tự nhiên thì 3n - 1 ϵ Ư(7) = \(\left\{\pm1,\pm7\right\}\) .....
\(b)\dfrac{n+5}{n+3}=\dfrac{n+3+2}{n+3}=1+\dfrac{2}{n+3}\)
\(\Rightarrow n+3\inƯ\left(2\right)=\left\{\pm1,\in2\right\}\) .....
\(c)\dfrac{n-3}{n-1}=\dfrac{n-1-2}{n-1}1-\dfrac{2}{n-1}\\ \Rightarrow n-1\inƯ\left(2\right)=\left\{\pm1,\pm2\right\}......\)
d: Ta có: 3n+1 chia hết cho n-1
=>3n-3+4 chia hết cho n-1
\(\Leftrightarrow n-1\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(n\in\left\{2;0;3;-1;5;-3\right\}\)
e: =>5n-5 chia hết cho 5n+1
\(\Leftrightarrow5n+1\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
hay \(n\in\left\{0;-\dfrac{2}{5};\dfrac{1}{5};-\dfrac{3}{5};\dfrac{2}{5};-\dfrac{4}{5};1;-\dfrac{7}{5}\right\}\)
f: =>5n+5-5 chia hết cho n+1
\(\Leftrightarrow n+1\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{0;-2;4;-6\right\}\)