Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3n + 3 + 3n + 1 + 2n + 3 + 2n + 2
= 3n.33 + 3n.3 + 2n.23 + 2n.22
= 3n.(27 + 3) + 2n.(8 + 4)
= 3n.30 + 2n.12
= 3n.5.6 + 2n.2.6
= 6.(3n.5 + 2n.2) \(⋮\) 6
a)Xét △ABC vuông tại A có
góc ABC+góc ACB=90 độ (Trong tam giac vuông, 2 góc nhọn phụ nhau)
Xét△AB vuông tại H, ta có
góc BAH+gócABC=90 độ
=>góc ACB=góc BAH( vì cùng +góc ABC =90 độ)
Xét tam giác CBK có CB=CK =>tam giác CBK cân tại C.
=> góc K=góc ABC
Ta có: ABC+CBK+C=180 độ
BKA=\(\dfrac{180-gócC}{2}\)(1)
Xét tam giácAHC vuông tạiH
=>HAC=90o-C
Do AD là tai phân giác của BAH =>BAD=DAH=\(\dfrac{BAH}{2}=\dfrac{C}{2}\)
Vì tai AH nằm giữa hai tia AD và AC nên:
DAC=DAH+HAC=\(\dfrac{C}{2}\)+90o-C
=C+\(\dfrac{C+180^{o^{ }}-2C}{2}\)=\(\dfrac{180^{o^{ }}-C}{2}\)(2)
Từ (1) và (2)=> DAC=BKA mà 2 góc này ở vị trí đồng vị nên KB song song với AD (đpcm)
Dây là 4 số nguyên dương liên tiếp, còn phần kia tương tự nha
Đặt A = n.(n+1)(n+2)(n+3) với n ≥ 1; n € N
A = [n.(n+3)].[(n+1)(n+2)] = (n² + 3n).(n²+3n+2)
= t(t+2) (với t = n² + 3n ≥ 4 ; t € N)
Ta thấy
t² < A = t² + 2t < t² + 2t + 1 = (t+1)²
=> A nằm giữa 2 số chính phương liên tiếp
=> A không phải là số chính phương (đpcm)
a) xét tam giác MAB và tam giác MDC có:
AM = MD (gt)
góc AMB = góc MCD ( đối đỉnh)
MB = MC (gt)
=> tam giác AMB = tam giác MCD
Xét tam giác MAB và tam giác MDC có:
MB=MC(gt);MA=MD(gt);góc BMA= góc CMD
Suy ra tam giác MAB=tam giác MDC (c.g.c)
\(\Rightarrow\) góc BAM=góc MDC ( 2 góc tương ứng ) mà 2 góc này ở vị trí so le trong \(\Rightarrow\) BA // DC
Mà BA vuông góc với AC ( tam giác ABC vuông) nên DC cũng vuông góc AC
\(\Rightarrow\) Tam giác ACD vuông tại C
a) \(\Delta AKO\)và \(\Delta BKO\)có:
OA = OB (theo GT)
\(\widehat{AOK}=\widehat{BOK}\)(Vì OK là tia phân giác của \(\widehat{xOy}\))
OK: cạnh chung
Do đó: \(\Delta AKO=\Delta BKO\)(c.g.c)
Suy ra: AK = KB (cặp cạnh tương ứng)
b) Ta có: \(\widehat{AKO}+\widehat{BKO}=180^o\)(vì là hai góc kề bù)
Mà \(\widehat{AKO}=\widehat{BKO}\)(do \(\Delta AKO=\Delta BKO\))
Do đó: \(\widehat{AKO}=\frac{180^o}{2}=90^o\)
Suy ra: \(OK\perp AB\)
c) \(\Delta HOK\)và \(\Delta IOK\)có:
\(\widehat{KHO}=\widehat{KIO}=90^o\)(do \(KH\perp Ox,KI\perp Oy\))
OK: cạnh chung
\(\widehat{AOK}=\widehat{BOK}\)(Vì OK là tia phân giác của \(\widehat{xOy}\))
Do đó: \(\Delta HOK=\Delta IOK\)(cạnh huyền, góc nhọn)
Suy ra \(\widehat{HKO}=\widehat{IKO}\)(cặp góc tương úng)
Mà tia KO nằm giữa hai tia KH và KI
Nên KO là tia phân giác của \(\widehat{HKI}\)
mình nè kết bạn đi
Nhỏ quá