K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
20 tháng 9 2020

Bài 1:

$20092009^{10}=(2009.10000+2009)^{10}=(2009.10001)^{10}$

$> (2009.2009)^{10}=(2009^2)^{10}=2009^{20}$

Vậy $20092009^{10}> 2009^{20}$

AH
Akai Haruma
Giáo viên
20 tháng 9 2020

Bài 2: Để bài yêu cầu tính tỷ số nên mình nghĩ bạn đang viết đề thì phải?

Bài 3: Để bài cần bổ sung thêm điều kiện $x,y$ tự nhiên/ nguyên/..... chứ nếu $x,y$ là số thực thì có vô số giá trị bạn nhé.

Bài 4:

Vì $x_1,x_2,...,x_n$ nhận giá trị $-1$ hoặc $1$ nên $x_1x_2,x_2x_3,...,x_nx_1$ cũng nhận giá trị $-1,1$

Xét $n$ số hạng $x_1x_2,x_2x_3,...,x_nx_1$. Vì $n$ số hạng này có tổng bằng $0$ nên trong đây số số có giá trị $1$ phải bằng số số có giá trị $-1$ ($=\frac{n}{2}$)

$\Rightarrow n\vdots 2$. Ta có:

$x_1x_2.x_2x_3.x_3.x_4....x_1x_n=(x_1x_2...x_n)^2=(-1)^{\frac{n}{2}}.1^{\frac{n}{2}}=(-1)^{\frac{n}{2}}$

Nếu $\frac{n}{2}$ lẻ thì $(x_1x_2..x_n)^2=-1< 0$ (vô lý). Do đó $\frac{n}{2}$ chẵn.

Hay $n\vdots 4$

2 tháng 11 2017

Ta có \(0.5\left(2007^{2005}-2003^{2003}\right)\)=  \(\frac{2007^{2005}-2003^{2003}}{2}\)

Vì \(2007^{2005}\)lẻ và \(2003^{2003}\)lẻ

\(\Rightarrow2007^{2005}-2003^{2003}\)chẵn

 \(\Rightarrow2007^{2005}-2003^{2003}⋮2\)

\(\Rightarrow0.5\left(2007^{2005}-2003^{2003}\right)\)là số nguyên (đpcm)

18 tháng 4 2018

1)      \(0,5\left(2007^{2005}-2003^{2003}\right)=\frac{1}{2}\left(2007^{2005}-2003^{2003}\right)\)

\(=\frac{2007^{2005}-2003^{2003}}{2}\)

=> Để \(0,5\left(2007^{2005}-2003^{2003}\right)\) là số nguyên thì \(2007^{2005}-2003^{2003}⋮2\)

Có \(2007^{2005}\)và \(2003^{2003}\)là số lẻ

=> \(2007^{2005}-2003^{2003}\)là số chẵn

=> \(2007^{2005}-2003^{2003}⋮2\)

=> \(0,5\left(2007^{2005}-2003^{2003}\right)\)là số nguyên

21 tháng 4 2018

bữa trước mình chưa làm được câu 2

2)  Có: \(\frac{\overline{ab}}{\overline{bc}}=\frac{a}{c}\)

=> \(\frac{10a+b}{10b+c}=\frac{a}{c}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có: 

\(\frac{10a+b}{10b+c}=\frac{a}{c}=\frac{10a+b-a}{10b+c-c}=\frac{9a+b}{10b}=\frac{111\left(9a+b\right)}{111.10b}=\frac{999a+111b}{1110b}\)

=> \(\frac{a}{c}=\frac{999a+111b}{1110b}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{c}=\frac{999a+111b}{1110b}=\frac{a+999a+111b}{c+1110b}=\frac{1000a+100b+10b+b}{1000b+100b+10b+c}\)\(=\frac{\overline{abbb}}{\overline{bbbc}}\)

=> \(\frac{\overline{abbb}}{\overline{bbbc}}=\frac{a}{c}\)

13 tháng 12 2019

Ta có: \(2n\)\(⋮\)\(2\)=> 2n là số chẵn

 \(\Rightarrow\left(x_1p-y_1q\right)^{2n}\ge0\)\(\forall x,p,y,q\inℝ;n\inℕ^∗\)\(\left(x_2p-y_2q\right)^{2n}\ge0\)\(\forall x,p,y,q\inℝ;n\inℕ^∗\);.... ;  \(\left(x_mp-y_mq\right)^{2n}\ge0\)\(\forall x,p,y,q\inℝ;m,n\inℕ^∗\)

\(\Rightarrow\left(x_1p-y_1q\right)^{2n}+\left(x_2p-y_2q\right)^{2n}+....+\left(x_mp-y_mq\right)^{2n}\ge0\)\(\forall x,p,y,q\inℝ;m,n\inℕ^∗\)

Mà \(\Rightarrow\left(x_1p-y_1q\right)^{2n}+\left(x_2p-y_2q\right)^{2n}+....+\left(x_mp-y_mq\right)^{2n}\le0\)\(m,n\inℕ^∗\)

Dấu " = " xảy ra <=> \(\hept{\begin{cases}\left(x_1p-y_1q\right)^{2n}=0\\......\\\left(x_mp-y_mq\right)^{2n}=0\end{cases}}\Rightarrow\hept{\begin{cases}x_1p-y_1q=0\\.....\\x_mp-y_mq=0\end{cases}}\Rightarrow\hept{\begin{cases}x_1p=y_1q\\.....\\x_mp=y_mq\end{cases}}\)\(\Rightarrow x_1p+x_2p+....+x_mp=y_1q+y_2q+...+y_mq\)

\(\Rightarrow p\left(x_1+x_2+...+x_m\right)=q\left(y_1+y_2+...+y_m\right)\)

\(\Rightarrow\frac{x_1+x_2+...+x_m}{y_1+y_2+...+y_m}=\frac{q}{p}\)(đpcm)

Bài 2:

a) Xét ΔAEF và ΔCED có

AE=CE(E là trung điểm của AC)

\(\widehat{AEF}=\widehat{CED}\)(hai góc đối đỉnh)

FE=DE(gt)

Do đó: ΔAEF=ΔCED(c-g-c)

⇒AF=DC(hai cạnh tương ứng)

b) Xét ΔAED và ΔCEF có

AE=CE(E là trung điểm của AC)

\(\widehat{AED}=\widehat{CEF}\)(hai góc đối đỉnh)

DE=FE(gt)

Do đó: ΔAED=ΔCEF(c-g-c)

⇒AD=CF(hai cạnh tương ứng) và \(\widehat{A}=\widehat{FCE}\)(hai góc tương ứng)

\(\widehat{A}\)\(\widehat{FCE}\) là hai góc ở vị trí so le trong

nên AD//CF(dấu hiệu nhận biết hai đường thẳng song song)

hay BD//CF

Ta có: AD=CF(cmt)

mà AD=BD(D là trung điểm của AB)

nên DB=CF

Xét ΔDBC và ΔCFD có

DB=CF(cmt)

\(\widehat{BDC}=\widehat{FCD}\)(so le trong, DB//FC)

DC là cạnh chung

Do đó: ΔDBC=ΔCFD(c-g-c)

⇒BC=FD(hai cạnh tương ứng)

Ta có: DE=EF(gt)

mà E nằm giữa D và F

nên E là trung điểm của DF

Ta có: BC=FD(cmt)

\(DE=\frac{FD}{2}\)(E là trung điểm của DF)

nên \(DE=\frac{1}{2}\cdot BC\)(đpcm1)

Ta có: ΔDBC=ΔCFD(cmt)

\(\widehat{BCD}=\widehat{FDC}\)(hai góc tương ứng)

\(\widehat{BCD}\)\(\widehat{FDC}\) là hai góc ở vị trí so le trong

nên DF//BC(dấu hiệu nhận biết hai đường thẳng song song)

hay DE//BC(đpcm2)

3: Ta có: P(0)=2007

\(\Leftrightarrow a\cdot0+b=2007\)

hay b=2007

Ta có: P(1)=2006

\(a+b=2006\)

hay a=2006-b=2006-2007=-1

Vậy: Đa thức P có dạng là -x+2007

20 tháng 6 2017

Sai đề: Không phải a1/a2 mà là a1^3/a2^3

Vì a22=a1a1;a23 = a2a4 nên

\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}\)

=> \(\frac{a_1}{a_2}=\frac{2a_2}{2a_3}=\frac{5a_3}{5a_4}\)

Lập phương cả 3 phân số trên, ta có:

\(\frac{a^3_1}{a^3_2}=\frac{8a^3_2}{8a^3_3}=\frac{125a^3_3}{125a^3_4}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có điều phải chứng minh